
TCM[®] SHOP MANUAL

MODEL: ISUZU C240 DIESEL ENGINE

TCM CORPORATION

FOREWORD

This manual is written to give the information about maintenance procedures for the model C240 Diesel engine, which is mounted on our forklift trucks. It is compiled based on the work shop manual (Publication No. IDE-2220) published by Isuzu Corporation. The relationship of the engine models and our applicable trucks is as follows:

		Applicable t	truck model		
FHD15Z7	FHD18Z7				
FHD15Z8	FHD18Z8				
FD15C9H	FD15T9H	FD18C9H	FD18T9H		
FCD15Z8	FCD18Z8				
FA15D					
FD20Z2S	FD23Z2S	FD25Z2S	FD28Z7S	FD30Z7S	
FD20Z3	FD23Z3	FD25Z3	FD28Z8	FD30Z8	
FD20Z4	FD23Z4	FD25Z4	FD28Z9	FD30Z9	
FD20Z5	FD23Z5	FD25Z5	FD28Z5	FD30Z5	
FD20C6	FD20T6	FD25C6	FD25T6	FD30C6	FD30T6
FCD20Z7	FCD23Z7	FCD25Z7	FCD28Z7	FCD30Z7	

June, 2002

TABLE OF CONTENTS

SECTION 1.	GENERAL INFORMATION	1
SECTION 2.	MAINTENANCE	15
SECTION 3.	ENGINE ASSEMBLY (1)(DISASSEMBLY)	33
SECTION 4.	ENGINE ASSEMBLY (2)(INSPECTION AND REPAIR)	51
SECTION 5.	ENGINE ASSEMBLY (3) (REASSEMBLY)	89
SECTION 6.	LUBRICATING SYSTEM	121
SECTION 7.	COOLING SYSTEM	139
SECTION 8.	FUEL SYSTEM	149
SECTION 9.	ENGINE ELECTRICALS	161
SECTION 10.	TROUBLESHOOTING	171
SECTION 11.	SPECIAL TOOL LIST	195
SECTION 12	CONVERSION TABLE	199

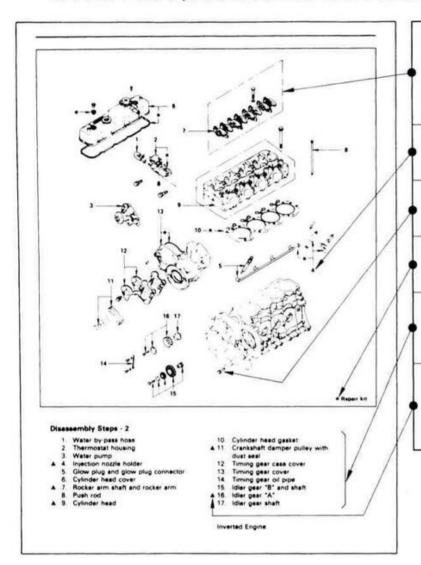
SECTION 1

GENERAL INFORMATION

TABLE OF CONTENTS

ITEM	
General repair instructions	2
Notes on the format on this manual	2
Main data and specifications	е
Design features and general outline	7
Tightening torque specifications	8
Major parts fixing nuts and bolts	9
Identifications	13

GENERAL REPAIR INSTRUCTIONS


- 1. Before performing any service operation with the engine mounted, disconnect the grounding cable from the battery.
 - This will reduce the chance of cable damage and burning due to short circuiting.
- 2. Always use the proper tool or tools for the job at hand.
 - Where specified, use the specially designed tool or tools.
- 3. Use genuine ISUZU parts referring ISUZU PARTS CATALOG for the engines surely.
- 4. Never reuse cotter pins, gaskets, O-rings, lock washers, and self locking nuts. Discard them as you remove them. Replace them with new ones.
- Always keep disassembled parts neatly in groups. This will ensure a smooth reassembly operation.
 It is especially important to keep fastening parts separate. These parts vary in hardness and design, depending on their installation position.
- 6. All parts should be carefully cleaned before inspection or reassembly.
 - Oil ports and other openings should be cleaned with compressed air to make sure that they are completely free of obstructions.
- 7. Rotating and sliding part surfaces should be lubricated with oil or grease before reassembly.
- 8. If necessary, use a sealer on gaskets to prevent leakage.
- 9. Nut and bolt torque specifications should be carefully followed.
- 10. Always release the air pressure from any machine-mounted air tank(s) before dismounting the engine or disconnecting pipes and hoses. To not do so is extremely dangerous.
- 11. Always check and recheck your work. No service operation is complete until you have done this.
- 12. Information contained in the "Main Data and Specifications" of the Workshop Manual and the Instruction Book may differ. In this case, the information contained in the Instruction Book should be considered applicable.

NOTES ON THE FORMAT OF THIS MANUAL

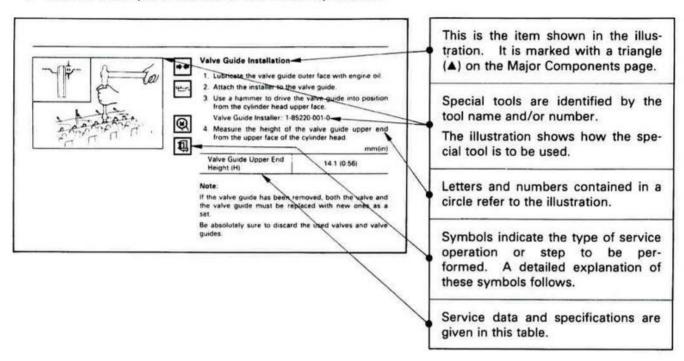
This Workshop Manual is applicable to the ISUZU industrial diesel engines model specified in the title of this Workshop Manual.

- 1. Find the applicable section by referring to the Table of Contents at the beginning of the Manual.
- 2. Common technical data such as general maintenance items, service specifications, and tightening torques are included in the "General Information" section.
- 3. Eash section is divided into sub-sections dealing with disassembly, inspection and repair, and reassembly.
 - The section ENGINE ASSEMBLY is an exception. This part is divided into three sections to facilitates quick indexing.
- 4. When the same servicing operation is applicable to several different units, the manual will direct you to the appropriate page.
- For the sake of brevity, self-explanatory removal and installation procedures are omitted.More complex procedures are covered in detail.

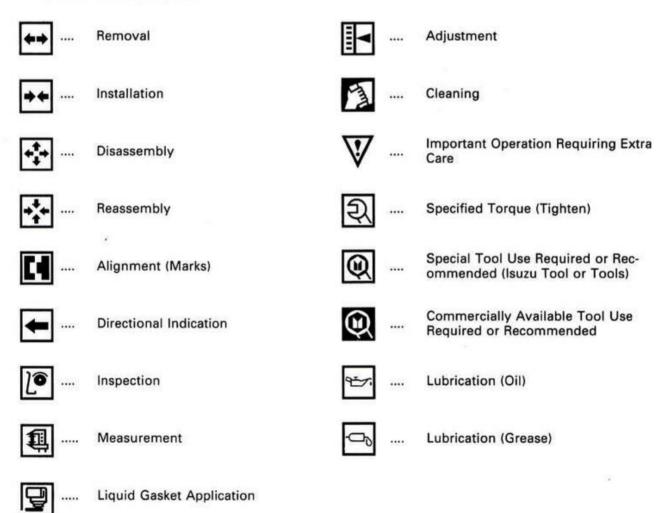
6. Each service operation section in this Workshop Manual begins with an exploded view of the applicable area. A brief explanation of the notation used follows.

Parts within a frame are to be removed and installed as a single unit, and their disassembly steps or reassembly steps are shown in the illustrations respectively.

The number tells you the service operation sequence.


Removal of unnumbered parts is unnecessary unless replacement is required.

The "* Repair Kit" indicates that a repair kit is available.


The parts listed under "Disassembly Steps" or "Reassembly Steps" are in the service operation sequence.

The removal or installation of parts marked with a triangle (▲) is an important operation. Detailed information is given in the text.

7. Below is a sample of the text of the Workshop Manual.

The following symbols appear throughout this Workshop Manual. They tell you the type of service operation or step to perform.

9. Measurement criteria are defined by the terms "standard" and "limit".

A measurement falling within the "standard" range indicates that the applicable part of parts are serviceable.

"Limit" should be thought of as an absolute value.

A measurement which is outside the "limit" indicates that the applicable part of parts must be either repaired or replaced.

- 10. Components and parts are listed in the singular form throughout the Manual.
- 11. Directions used in this Manual are as follows:

Front:

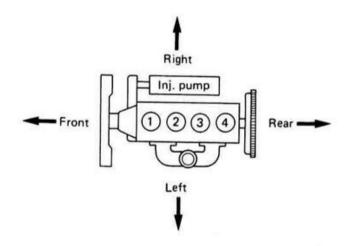
The cooling fan side of the engine viewed from the flywheel.

Right;

The injection pump side of the engine.

Left;

The exhaust manifold side of the engine.


Rear;

The flywheel side of the engine.

Cylinder numbers are counted from the front of the engine.

The front most cylinder is No. 1 and rear most cylinder is the final cylinder number of the engine.

The engine's direction of rotation is counterclockwise viewed from the flywheel.

NOTE:

- 1. These specifications are based on the standard model engine.
- 2. Specifications for items marked with asterisk (*) will vary according to the type of equipment on which the engine is installed.
- 3. As the fuel injection timing crank angle differs depending on an engine application, respective engine's timing crank angle, when necessary, should be asked ISUZU MOTORS LIMITED via the machine supply source or the engine supply source. In such case, be sure to give the supply source full information on your engine's identification such as the engine serial number etc. which is stamped or affixed on the engine.

DESIGN FEATURES AND GENERAL OUTLINE

1. General Outline of ISUZU C240 Diesel Engine

The model C240 which has been used by various original equipment manufactures is one of a main industrial diesel in ISUZU's own engine line-up.

Its wide versatility and superior long engine life which are brought by the simple engine construction and easy maintenance is a reason why the C240 is welcomed to the world wide industrial engine market.

2. Main Engine Parts and Their Features

It is consists of a mono-block casted cylinder block with five crankshaft journal supporting bulbheads and detachable crankcase along with a stamped oil sump. The cylinder bores are of a dry type Chromard Liner.

The cylinder head is also of a mono-block casted type with an antechamber cavity to form a swirl combustion chamber along with the press-in heat plug per cylinder. The intake ports and exhaust ports are arranged at the engine left hand side giving a superior maintenance accessibility at the engine RH side.

3. Fuel System

This engine uses the Bosch in-line A type injection pump of distributor VE type injection pump depending on the engine application. A variable speed control RSV type mechanical governor is mainly equipped on the in-line injection pump and, a semi-variable speed control type mechanical governor is equipped on the distributor type injection pump.

A built-in feed pump is equipped on the in-line type, while the distributor type has no feed pump, which is remotely installed on the water sedimentor.

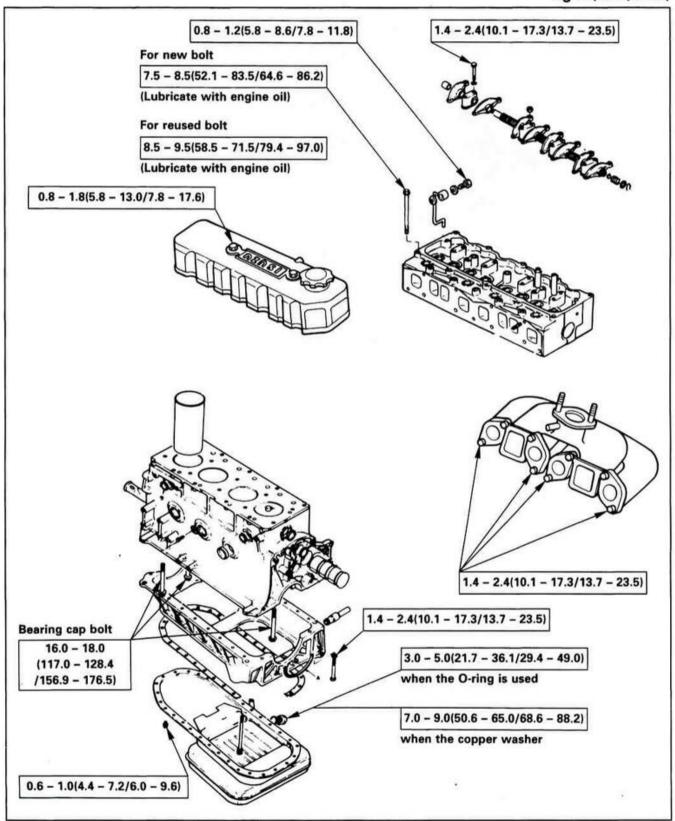
TIGHTENING TORQUE SPECIFICATIONS

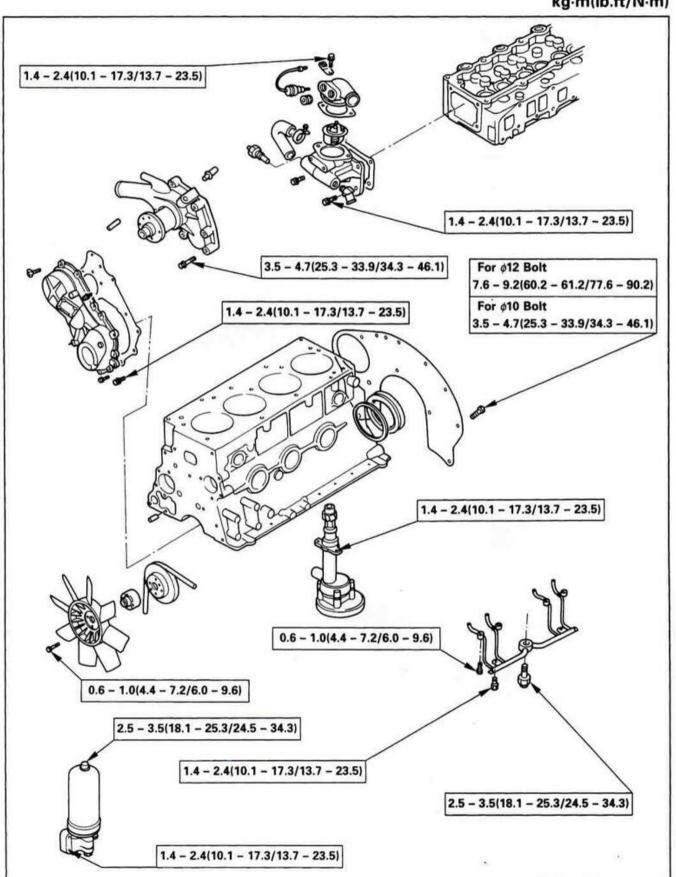
STANDARD BOLTS

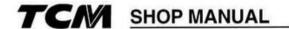
The torque values given in the following table should be applied where a particular torque is not specified.

kg-m(lb.ft				
Bolt identification	4	\bigcirc	9	
Bolt diameter x pitch (mm)	4T (Low carbon steel)	7T (High carbon steel)	9T (Alloy steel)	
M 6×1.0	0.6 ±0.2 (4.4± 1.4/ 5.88± 1.96)	0.75± 0.2 (5.43± 1.43/ 7.35± 1.96)	_	
M 8 ×1.25	1.3 ±0.5	1.75± 0.5	2.0 ± 0.7	
	(0.4± 3.4/ 12.74± 4.90)	(12.66± 3.00/ 17.15± 4.90)	(17.36± 5.36/ 19.60± 6.86)	
M10 ×1.25	2.8 ±0.7	3.75± 0.9	5.0 ± 1.3	
	(20.3± 5.2/ 27.44± 6.86)	(27.20± 7.2 / 36.75± 8.82)	(36.88± 9.88/ 49.00± 12.74	
M12 ×1.25	6.25±1.2	7.75± 1.5	.9.65± 1.9	
	(45.2± 9.2/ 61.25±11.76)	(56.03± 11.03/ 75.95± 14.70)	(69.77± 13.77/ 94.57± 18.62	
M14 ×1.5	8.75±1.9	11.85± 2.3	14.50± 2.9	
	(70.5±14.5/ 85.75±18.62)	(85.67± 16.6 /116.13± 22.54)	(104.84± 20.83/142.1 ± 28.42	
M16 ×1.5	13.3 ±2.7	17.30± 3.5	20.40± 4.1	
	(94.0±17.0/130.34±26.46)	(125.07± 25.07/169.54± 34.30)	(147.50± 29.49/199.92± 40.18	
M18 ×1.5	19.2 ±3.8	24.90± 5.0	29.30± 5.9	
	(138.9±27.9/188.16±37.24)	(180.03± 36.3 /244.02± 4.90)	(211.84± 42.83/287.14± 57.82	
M20 ×1.5	26.3 ±5.3	34.40± 6.9	40.40± 8.1	
	(190.2±38.2/257.74±51.94)	(248.72± 49.7 /337.12± 67.62)	(292.10± 58.09/395.92± 79.38	
M22 ×1.5	33.0 ±8.3	46.25± 9.2	54.10±10.8	
	(245.1±60.1/323.40±81.34)	(334.39± 66.38/453.25± 90.16)	(391.15± 78.14/530.18±105.84	
M24 ×2.0	45.8 ±9.2	58.20±14.0	70.60±14.1	
	(331.2±60.2/448.84±90.16)	(420.70±102.78/570.36±137.20)	(510.44±101.44/691.88±138.18	
*M10 ×1.5	2.7 ±0.7	3.7 ± 0.9	4.9 ± 1.2	
	(19.6± 5.6/ 26.46± 6.86)	(26.75± 6.7 / 36.26± 8.82)	(35.43± 8.42/ 48.02± 11.76	
*M12 ×1.5	5.8 ±1.2	7.2 ± 1.4	9.1 ± 1.8	
	(42.0± 9.0/ 56.84±11.76)	(52.02± 10.05/ 70.56± 13.72)	(65.80± 12.80/ 89.18± 17.64	
*M14 ×2.0	9.1 ±1.8	11.2 ± 2.2	13.6 ± 2.7	
	(65.8±12.8/ 89.18±17.64)	(80.97± 15.7 /109.76± 21.56)	(98.33± 19.33/133.28± 26.46	
*M16 ×2.0	12.7 ±2.5	16.5 ± 3.3	19.5 ± 3.9	
	(91.9±17.9/124.46±24.5)	(119.30± 24.3 /161.70± 32.34)	(140.99± 27.99/191.1 ± 38.22	

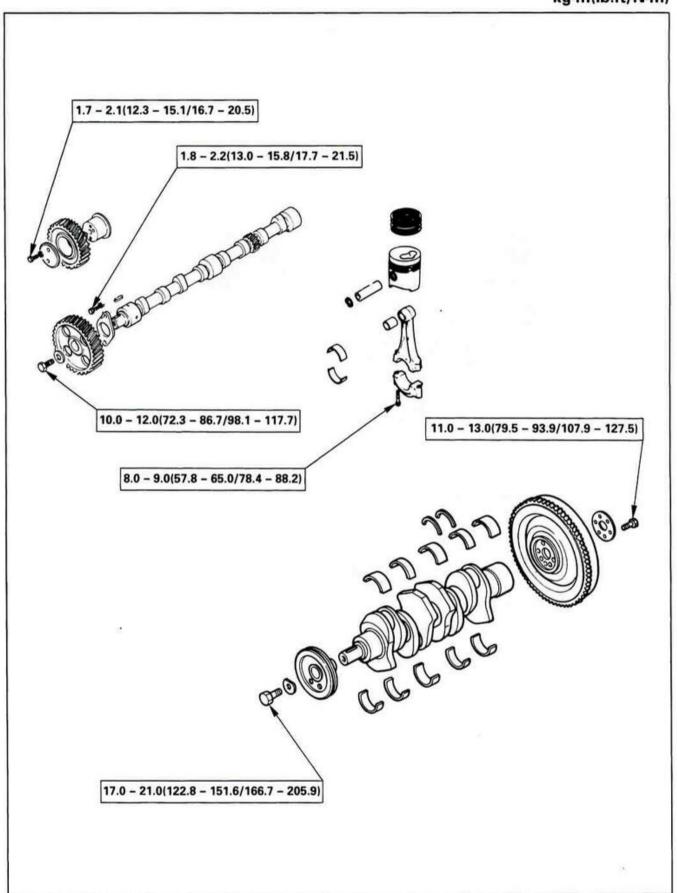
Note

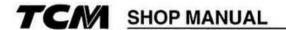

The astarisk (*) indicates that the bolts are used for female-threaded parts that are made of soft materials such as casting.

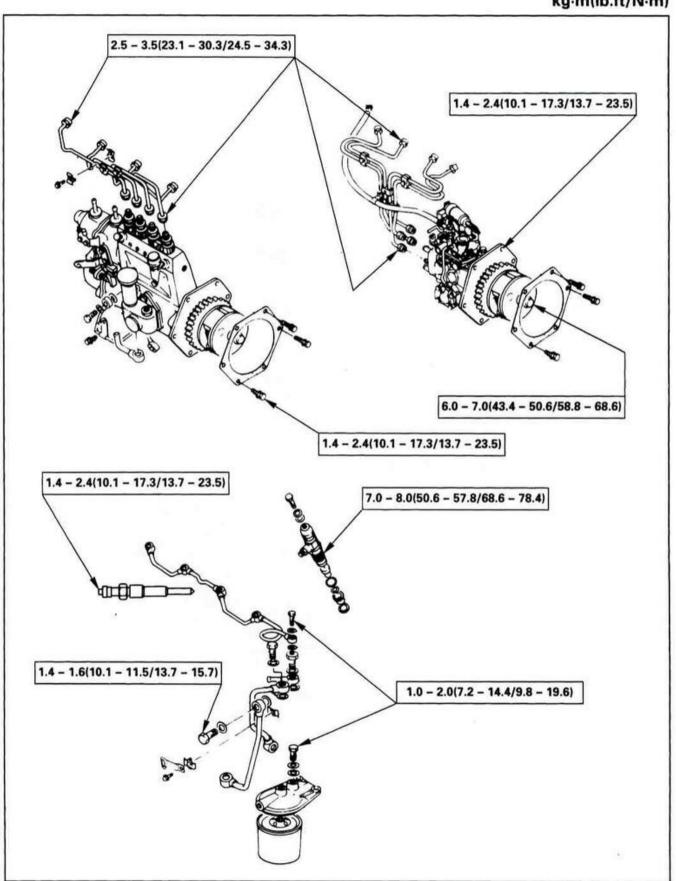



MAJOR PART FIXING NUTS AND BOLTS

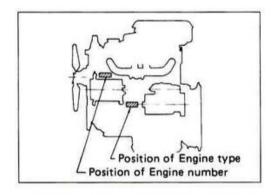
Cylinder body, cylinder head, crankcase, oil pan and rocker arm shaft

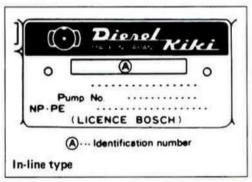



Timing gear case, water pump, flywheel housing, oil pump and oil filter



Crankshaft, flywheel, camshaft and camshaft gear





Injection pump, fuel pipe, injection nozzle holder and glow plug

IDENTIFICATIONS

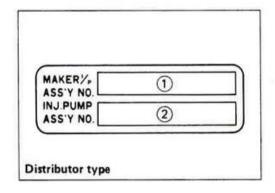
MODEL IDENTIFICATION

Engine Serial Number

The engine number is stamped on the right hand side of the cylinder body.

INJECTION PUMP IDENTIFICATION

Injection Pump Number


Injection volume should be adjusted after referring to the adjustment data applicable to the injection pump installed.

The injection pump identification number (A) is stamped on the injection pump identification plate.

Note:

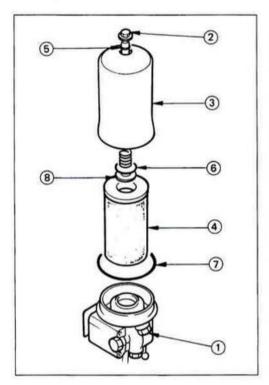
Always check the identification number before beginning a service operation.

Applicable service data will vary according to the identification number. Use of the wrong service data will result in reduced engine performance and engine damage.

- DKC (Manufacturer of the injection pump) identification number
- ② ISUZU Parts Number

SECTION 2

MAINTENANCE


TABLE OF CONTENTS

TEM PA	PAGE	
_ubricating system∴	16	
Fuel system	18	
Cooling system	23	
Valve clearance adjustment	24	
njection timing	25	
Compression pressure measurement	30	
Engine repair kit	31	
Recommended lubricants	32	
Engine oil viscosity chart	32	

Note: Maintenance intervals such as fuel or oil filter changes should be referred to INSTRUCTION BOOK.

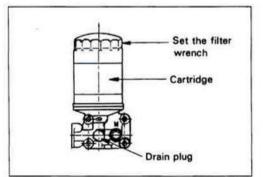
LUBRICATING SYSTEM

Main Oil Filter Replacement Replaceable Element Type

Removal

1. Loosen the drain plug ① to drain the engine oil from the oil filter.

Place a receptacle beneath the drain port to contain the drained oil.


- Remove the center bolt ② and the filter body ③ from the filter cover along with the filter element ④.
- Discard the used filter element.
- Wipe the oil filter fitting face clean with a rag. This
 will allow the new oil filter to seat properly.

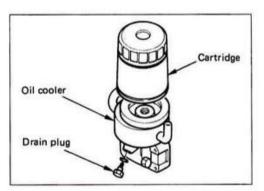
Installation

- Install the three O-rings ⑤, ⑥, ⑦ and new element
 ④ and, check that they are correctly positioned.
- Reassemble the filter body ③ with the center bolt ②.
 Oil filter Center Bolt Torque kg·m(lb.ft/N·m)

- Check that the gasket is properly seated. This will prevent oil leakage.
- Start the engine and check for oil leakage from the oil filter.
- Check the engine oil level and replenish to the specified level if required.

Disposable Cartridge (Spin-On) Type Removal

Removal and Installer: Filter Wrench



- Loosen the used oil filter by turning it counterclockwise with the filter wrench.
- 2. Discard the use coil filter.

Installation

- Wipe the oil filter mounting face with a clean rag.
 This will allow the new oil filter to seal properly.
- 2. Lightly oil the O-ring.
- 3. Turn in the new oil filter until the sealing face is fitted against the O-ring
- 4. Use the filter wrench to turn in the oil filter an additional 1-1/4 of a turn or one turn.
- Start the engine and check for oil leakage from the oil filter.
- Check the engine oil level and replenish to the specified level if required.

Disposable Cartridge Spin-on Type with Built-in Oil Cooler Type

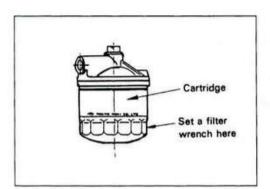
Removal

Removal and Installer: Filter Wrench

- Loosen the used oil filter by turning it counterclockwise with the filter wrench.
- Discard the used filter.

Installaltion

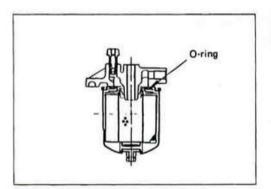
- Wipe the oil filter mounting face with a clean rag.
 This will allow the new oil filter to seat properly.
- 2. Lightly oil the O-ring
- Turn in the filter until the sealing face is fitted against the O-ring.


- Use the filter wrench to turn in the oil filter an additional 1-1/4 of a turn.
- Start the engine and check for oil leakage from the oil filter.
- Check the engine oil level and replenish to the specified level if required.

FUEL SYSTEM

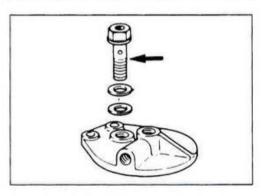
Fuel filter Replacement

Disposable Cartridge Spin-on Type



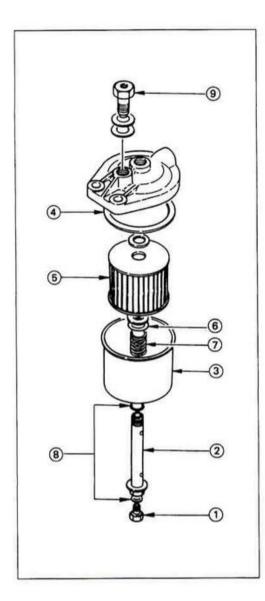
Removal

Loosen the fuel filter by turning it counterclockwise with the filter wrench or your hand. Discard the used filter.


Wipe the fuel filter fitting face clean with a rag. This will allow the new fuel filter to seat properly.

Installaltion

- 1. Apply a light coat of engine oil to the O-ring
- 2. Supply fuel to the new fuel filter. This will facilitate air bleeding.
- Turn in the new fuel filter until the filter O-ring is fitted against the sealing face.
- 4. Use the filter wrench to turn in the fuel filter an additional 2/3 of a turn.


Overflow Valve

Check the overflow valve for clogging.

Check the ball side for suction leakage.

kg/cm² (psi/kPa)

	kg/cm-(psi/k-a
Overflow Valve Opening Pressure (Reference)	1.5 (21.33/147)

Replaceable Element Type

++

Removal

- Loosen the drain plug ① to drain the fuel from the fuel filter.
- Loosen the center bolt ② to remove the filter body
 3, the spring ⑦, the spring seat ⑥ and the gaskets
 8.
- 3. Discard the used element.

Installation

- Wash the filter body and the other fuel filter parts immersing them into clean diesel fuel.
- Reinstall the parts in reverse order of the removal. Use the new element.

Fuel Filter Center Bolt Torque

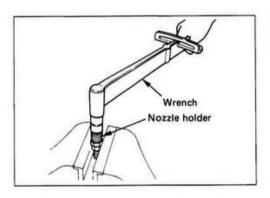
kg·m(lb.ft/N·m)

2.5 - 3.5 (18.0 - 25.2 / 24.5 - 34.3)

Check that the gaskets are properly seated. This will prevent fuel from leakage.

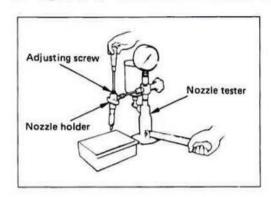
Overflow Valve

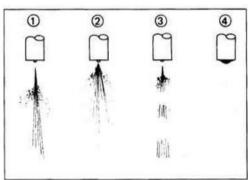
Check that the overflow valve 9 for clogging.

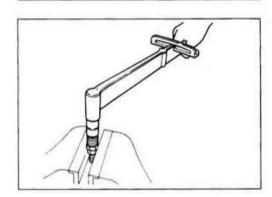

Check the ball side for suction leakage.

kg/cm² (psi/kPa)

Overflow Valve Opening	4.5 (04.00 /447)
Pressure (Reference)	1.5 (21.33 / 147)


Regarding the injection pipe and the nozzle holder removal and installation, refer to the section 3 DISAS-SEMBLY page 3- and the section 5 REASSEMBLY 5-.





Injection Nozzle Adjustment

- Clamp the injection nozzle holder in a vise.
- Use a wrench to remove the injection nozzle holder cap.
- Loosen the adjusting screw lock nut (if so equipped).
- 4. Remove the injection nozzle holder from the vise.

Attach the injection nozzle holder to the injection nozzle tester.

Adjust the injection starting pressure and the spray condition by turning the adjusting screw while operating the injection nozzle tester.

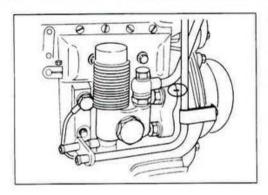
Injection Nozzle Injection
Starting Pressure kg/cm² (psi/kPa)

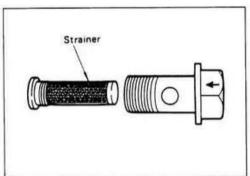
120 (1706/11.8)

- Refer to the illustration for different spray conditions.
 - ① Correct
 - (2) Incorrect (Restrictions in orifice)
 - 3 Incorrect (Restrictions in orifice)
 - 4 Incorrect (Dripping)
- 8. Temporarily tighten the cap nut (lock nut).
- 9. Clamp the injection nozzle holder in a vise.
- Tighten the cap nut (lock nut) to the specified torque.

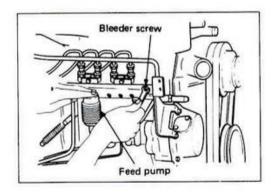
Cap Nut Torque

kg-m(lb.ft/N-m)


3.0 - 4.0 (21.7 - 28.9 / 29.4 - 39.2)



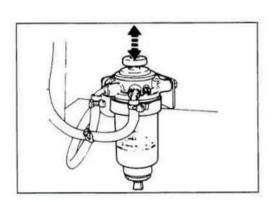

Q


WARNING:

TEST FLUID FROM THE INJECTION NOZZLE TESTER WILL SPRAY OUT UNDER GREAT PRESSURE. IT CAN EASILY PUNCTURE A PERSON'S SKIN. KEEP YOUR HANDS AWAY FROM THE INJECTION NOZZLE HOLDER TIP AT ALL TIMES.

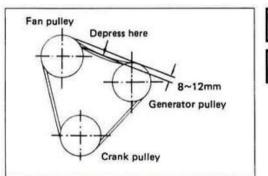
Feed Pump Strainer (In-line type injection pump only)

- 1. Remove the joint bolt.
- 2. Use a screwdriver to remove the strainer.
- 3. Wash the strainer in clean diesel fuel.


Water Sedimentor

Dewatering Procedure

- Loosen the water sedimentor drain plug at the bottom of the sedimentor.
- 2. Pump the priming pump with operating the priming pump cap up and down.
 - The sedimented water will be drained from the drain plug.
- 3. After the draining, retighten the drain plug securely.
- Do the air bleeding referring AIR BLEEDING described in this section.
- Start and idle the engine to check the fuel leakage arround the fuel system.


Air Bleeding

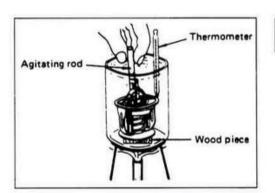
- For the engine equipped with in-line type injection pump
 - Loosen the feed pump cap on the injection pump.
 - 2 Loosen the bleeder screw on the injection pump shown in the illustration.
 - ③ Operate the feed pump until no more bubbles visible in the fuel being discharged from the bleeding screw.
 - 4 Retighten the bleeding screw and the feed pump cap screw and the feed pump cap securely after the bleeding.

- 2. For the engine equipped with distributor type injection pump
 - Unscrew the feed pump cap on the water sedimentor.
 - ② Pump the feed pump with repeatedly pushing down the cap to force the air in the fuel circuit into the injection pump.
 - 3 Do the cranking a short while with operating starter motor.
 - 4 The bleeding will be accomplished within ten seconds by this procedure.
 - When the engine does not still start despite of the bleeding, repeat the procedure until the engine will start.
 - (5) Firmly screw in the feed pump cap after the bleeding.

COOLING SYSTEM

Cooling Fan Drive Belt

Adjustment


- 1. Check the cooling fan drive belt for cracking and other damage.
- Check the drive belt tension by exerting a force of 10 kg (22 lb) midway between the fan pulley and the generator pulley.
- Adjust the belt tension by loosing the generator mounting bolt and the generator adjusitng bolt and pivoting the generator.

Be sure to retighten the bolts after adjusting the belt tension.

Cooling Fan Drive Belt Deflection

mm(in)

8 - 12(0.3 - 0.57)

Thermostat

Inspection

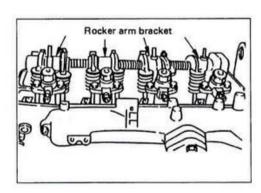
Visually inspect the thermotat.

Replace the thermostat if excessive wear or damage is discovered during inspection.

Measure the valve lift.

Amount of Valve Lift at 95°C (203°F)

mm(in)


8.0 (0.30)

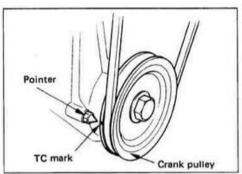
Valve Opening Temperature

°C(°F)

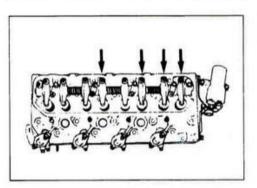
80 - 84 (176 - 183)

VALVE CLEARANCE AND ADJUSTMENT

Inspection


Check the rocker arm bracket bolts for looseness and retighten as necessary before adjusting the valve clearance.

Rocker Arm Bracket Bolt Torque


kg·m(lb.ft/N·m)

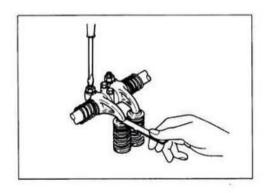
1.4 - 2.4 (10.1 - 17.3 / 13.7 - 23.5)

 Bring the piston in either the No. 1 cylinder or the No. 4 cylinder to TDC on the compression stroke by turning the crankshaft until the crankshaft pulley TDC line is aligned with the timing pointer.

Check for play in the No. 1 intake and exhaust valve push rods.

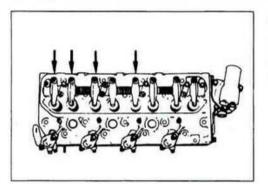
If the No. 1 cylinder intake and exhaust valve push rods have play, the No. 1 piston is at TDC on the compression stroke.

If the No. 1 cylinder intake and exhaust valve push rods are depressed, the No. 4 piston is at TDC on the compression stroke.


Intake and Exhaust Valve Clearance

mm(in)

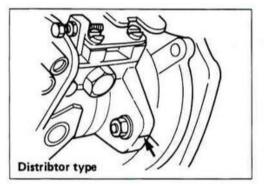
0.45 (0.018)

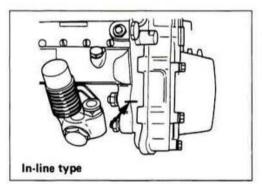


Adjust the No. 1 or the No. 4 cylinder valve clearances while their respective cylinders are at TDC on the compression stroke.

- Loosen each valve clearance adjusting screw as shown in the illustration.
- Insert a feeler gauge of the appropriate thickness between the rocker arm and the valve stem end.
- Turn the valve clearance adjusting screw until a slight drag can be felt on the feeler gauge.

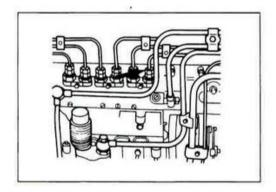
- Tighten the lock nut securely.
- Rotate the crankshaft 360°.

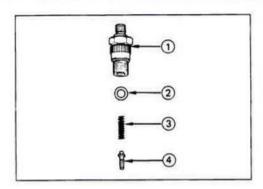

- Realign the crankshaft damper pulley TDC notched line with the timing pointer.
- 10. Adjust the clearance for the remaining valves as shown in the illustration.


INJECTION TIMING

Checking Procedure

- Check that the notched line on the injection pump fixing flange is aligned with the injection pump mounting flange's notched line.
- If a timing marks misalignment is discovered in the timing inspection, do the following adjustment after all of the fuel system parts have installed.


Adjustment Procedure


The fuel injection timing procedure differs depending on the fuel injection pump type used.

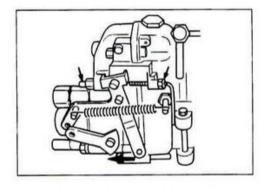
The procedure for the in-line type injection pump

Disconnect the injection pipe from the No. 1 plunger.

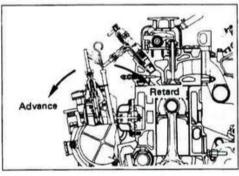
This will allow you to visually check the fuel injection starting at the No. 1 plunger.

 Remove the delivery valve holder ①, the valve seat ②, valve spring ③ and the delivery valve ④ from the No. 1 plunger.

Reinstall the delivery valve holder ① and tighten it to the specified torque.


Delivery Valve Tightening Torque

kg·m(lb.ft/N·m)

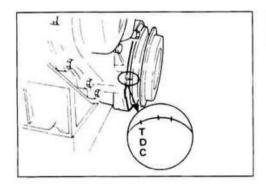

Note:

Take care to avoid entry of dust or foreign particles into the injection pump interior when the delivery valve has been removed.

Do not reinstall the delivery valve spring, the valve seat and the delivery valve. They will be reinstalled after the procedure have finished.

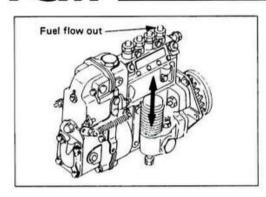
4. Hold the fuel control lever at the full fuel position.

The injection timing adjustment is done by pivoting the injection pump at the pump drive shaft.


To advance the timing

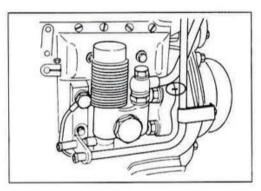
Pivot the injection pump body at the drive shaft toward the engine outside.

To retard the timing


Pivot the injection pump body at the drive shaft toward the engine inside.

Disconnect the No. 2 to No. 4 injection pipes to allow the pump is pivoted easily.

 Align the timing pointer at the timing gear case and the specified injection timing notch line on the crankshaft pulley as illustrated.

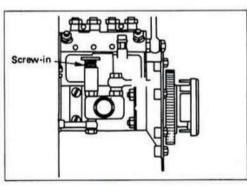

- Loosen the four injection pump fixing nuts to allow the pump body to pivot.
- Operate the priming pump to allow the fuel to follow out from the No. 1 plunger.

Note:

The crank angle differs depending on the engine application, therefore, contact your machine supply source or ISUZU MOTORS LIMITED when you need the crank angle.

- With continuing the pumping described in the item
 pivot the injection pump body toward the engine inside or the engine out side as required slowly.
- The fuel flow will stop at some injection pump position. This shows the fuel injection starting at the No. 1 plunger, thus correct fuel injection timing is obtained.

Blow out the fuel remaining on the No. 1 delivery valve holder and check that no fuel is flowed out at place as pumping is done.



Retighten the four injection pump fixing nuts to the specified torque.

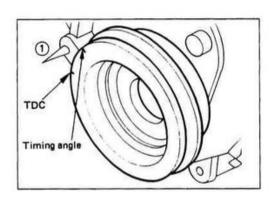
Injection Pump Fixing Nut Torque

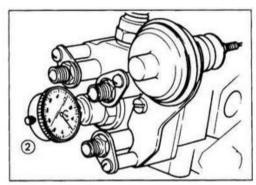
kg-m(lb.ft/N-m)

1.8 - 2.2 (12.7 - 15.5 / 17.7 - 21.5)

13. Remove the delivery valve holder at the No. 1 plunger. Install the valve spring, valve seat and delivery valve. Reinstall the delivery valve holder and tighten it to the specified torque.

Delivery Valve Tightening Torque


 $kg \cdot m(lb.ft/N \cdot m)$


4.0 - 4.5 (28.9 - 32.5 / 39.2 - 44.2)

 Reconnect the injection pipes and screw-in the feed pump knob.

Note:

The engine operation with feed pump knob in unscrewed condition will result the feed pump failure.

The procedure for the distributor type injection pump

- Disconnect the injection pipes from the injection pump to install the Static Timing Gauge.
- Rotate the crankshaft to bring the piston in the No. 1 cylinder to TDC on the compression stroke.
 - 1 = Timing pointer

Remove one bolt from the distributor head screw.

Install the static timing gauge 2.

The probe of the gauge should be depressed inward approximately 1 mm (0.039 in).

Static Timing Gauge : 5-8840-0145-0 (J-28827)

 Then reversely (counterclockwise) turn the crankshaft about 60° before the TDC, and set the dial gauge needle to 0 position.

Slightly rotate the crankshaft in both directions and check that the needle is stable at 0 position.

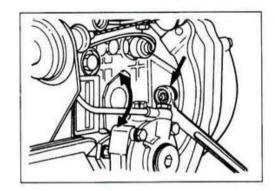
 Slowly turn the crankshaft pulley in engine normal rotating direction with watching the dial indicator on the injection pump.

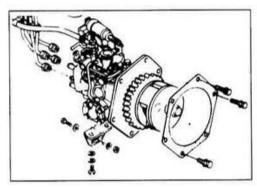
When, doing like this, the dial indicator indicates 0.50 mm (0.0197 in), the injection pump plunger is lifted to the fuel injection starting position.

Accordingly, the injection starting timing mark notched line on the crankshaft pulley and the timing pointer must be aligned at this plunger position.

Plunger Lifted Position at Fuel Injection Starting Timing

mm(in)


*0.50 (0.0197)


Note:

This valve with an asterisk (*) is based on the standard engine.

As the fuel injection timing crank angle differs depending on the engine application, respective engine's timing crank angle, when necessary, should be asked ISUZU MOTORS LIMITED via the machine supply source or the engine supply source. In such case, be sure to give the supply sourcefull information on your engine's identification such as the engine serial number etc. which is stamped or affixed on the engine.

If the injection timing is outside the specified plunger position continue with the following steps.

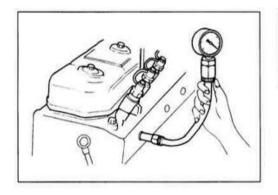
Loosen the injection pump fixing nuts and bracket bolts.

Adjust the injection pump setting angle.

To advance the timing

Pivot the injection pump body at the drive shaft toward the engine outside.

To retard the timing


Pivot the injection pump body at the drive shaft toward the engine inside.

 Tighten the injection pump fixing nuts and the bracket bolts to the specified torque. Remove the dial indicator and install the bolt to the distributor head screw.

Reinstall the injection pipes.

COMPRESSION PRESSURE MEASUREMENT

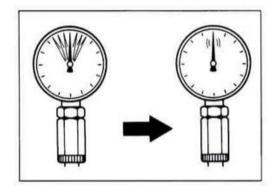
- Start the engine and allow it to warm up.
 Engine Coolant Temperature; Above 80°C (176°F).
- 2. Remove the glow plugs.

Set the adapter and compression gauge to the No. 1 cylinder glow plug hole.

Compression Gauge

(with Adapter): 5-8840-2008-0 (J-29762)

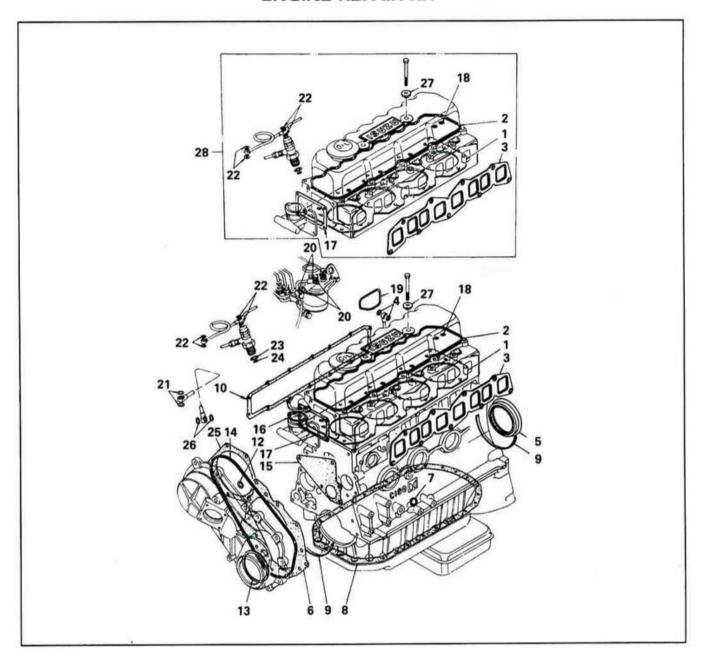
Adapter: 5-8531-7002-0 (J-26999-20)


 Turn the engine over with the starter motor and take the compression gauge reading.

Compression Pressure

kg/cm²(psi/kPa) at 200rpm

at seal level


Standard	Limit
31 (441/3038)	23 (327/2254)

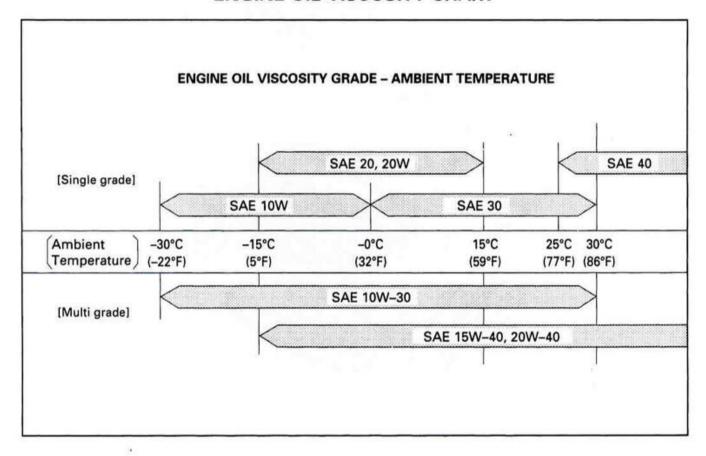
5. Repeat the procedure (Steps 3 and 4) for the remaining cylinders.

If the measured value is less than the specified limit, refer to "Trouble Shooting" in this Manual.

ENGINE REPAIR KIT

- 1. Gasket; cylinder head
- 2. Gasket; cylinder head cover
- Gasket ; intake and exhaust manifold
- 4. Gasket; joint bolt
- 5. Seal; crankshaft rear
- 6. Gasket; front plate
- 7. Gasket; drain plug
- 8. Gasket; oil pan to case
- 9. Gasket; oil pan to bearing cap
- 10. Gasket ; tappet cover
- 12. Gasket; gear case
- 13. Seal; oil
- 14. Gasket; gear case

- Gasket ; water pump to cylinder block
- 16. Gasket; outlet pipe
- 17. Gasket; cylinder head to housing
- 18. Sealing ring; split collar
- 19. Gasket; oil filter
- 20. Gasket; fuel pump
- 21. Gasket; vacuum pipe
- 22. Gasket
- 23. Washer; nozzle holder
- 24. Washer; corrugated
- 25. Gasket; bracket to front plate
- 26. Gasket
- 27. Gasket; head cover bolt
- 28. Repair kit; top overhaul kit



RECOMMENDED LUBRICANTS

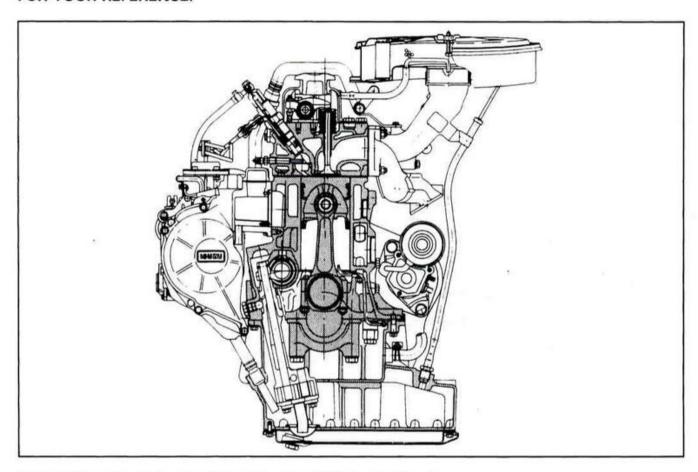
TYPE OF LUBRICANTS (API)

DIESEL ENGINE OIL; CC OR CD GRADE

ENGINE OIL VISCOSITY CHART

SECTION 3

ENGINE ASSEMBLY (1) (DISASSEMBLY)


TABLE OF CONTENTS

ITEM PA	PAGE	
General description	. 34	
Disassembly 1st step	. 35	
Disassembly 2nd step	. 37	
Disassembly 3rd step	. 40	
Cylinder head disassembly step	. 44	
Piston and connecting rod disassembly step	. 46	
Rocker arm and shaft disassembly step	. 48	
Camshaft disassembly step	. 49	

ENGINE ASSEMBLY

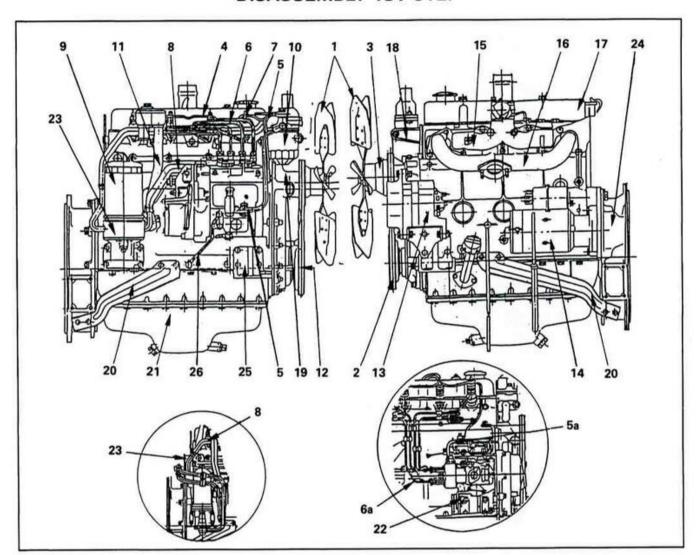
GENERAL DESCRIPTION

FOR YOUR REFERENCE:

Note: This sectional drawing is based on the C240 standard engine.

The cylinder liners used are the chromard type, which has a proven record of a superior durability.

The crankshaft is of an one-piece precision forging five bearing support and induction hardened journal surface type.

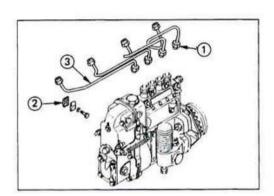

To give this engine more adaptability as a superior industrial engine than the original one, a two types of piston ring configuration are used depending on an engine application.

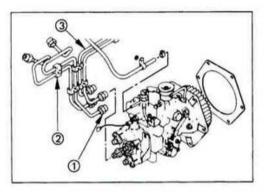
- Four piston rings type pistons
 - This type of piston ring configuration is used depending on an engine application.
- Three piston rings type pistons

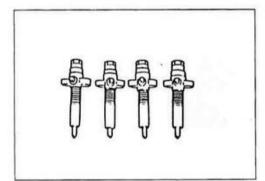
This piston ring configuration along with an piston cooling by oiling jet and an auto-thermatic type piston, which built-in a steel strut to minimize the piston thermal distortion, are also used depending on an engine application.

(Hereinafter, in the description, the four piston rings type piston is called Four Rings Type and the three piston rings type piston is called Three Rings Type.)

DISASSEMBLY 1ST STEP






Disassembly Steps

- 1. Cooling fan
- 2. Fan belt
- 3. Fan pulley
- 4. Leak off pipe
- 5. Fuel pipe
- 5a Fuel pipe
- ▲ 6. Fuel injection pipe
- ▲ 6a Fuel injection pipe
- ▲ 7. Injection nozzle and glow plug
 - Water hose (For oil cooler. If so equipped.)
 - 9. Oil filter assembly
 - 10. Fuel filter assembly
 - 11. Air breather hose
 - 12. Crankshaft pulley

- 13. Generator
- 14. Starter
- ▲ 15. Intake manifold
- ▲ 16. Exhaust manifold
- 17. Cylinder head cover
- 18. Thermostat housing
- 19. Water pump
- 20. Stiffener
- 21. Oil pan
- 22. Injection pump bracket
- 23. Oil cooler (if so equipped)
- 24. Flywheel housing
- 25. Engine foot
- 26. Injection pump oil pipe

Important Operations

▲ Fuel Injection Pipe with Clip

- 1) Loosen the injection pipe sleeve nuts at the delivery valve side ①.
 - Do not apply excessive force to the injection pipes.
- 2) Loosen the injection pipe clips 2).
- 3) Remove the injection pipes 3.

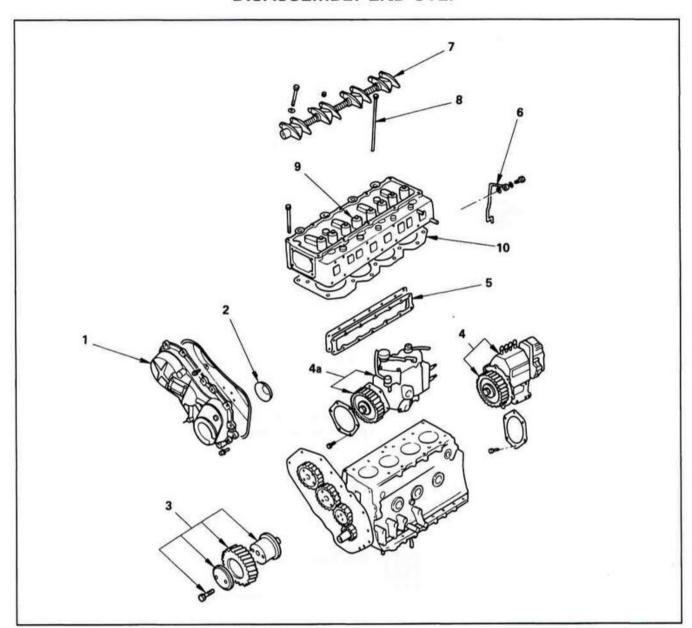
Note:

Plug the delivery valve holder ports with the shipping cap to prevent the entry of foreign material.

▲ Injection Nozzle and Glow plug

When the nozzles are reused, they must be installed to the original place without interchanging. Handle them carefully so that not to damage the nozzle tip.

▲ Intake and Exhaust manifold


Before the removal of the intake and exhaust manifold, remove the air breather hose and the vacuum hose. (If so equipped.)

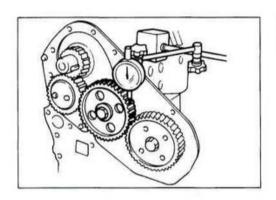
▲ Crankshaft pulley

Use an appropriate wrench to remove the crankshaft pulley nut.

Width between the hexagonal two edges of the crankshaft pulley bolt wrench: 36 mm (1.41 in).

DISASSEMBLY 2ND STEP

Disassembly Steps


- ▲ 1. Timing gear case
 - 2. Crankshaft oil thrower
 - 3. Idler gear and shaft
- ▲ 4. Injection pump with drive gear (In-line type)
- ▲ 4a Injection pump with drive gear (Distributor type)
- 5. Tappet chamber cover
- 6. Valve rocker oil feed pipe
- 7. Rocker arm shaft bracket and rocker arm
 - 8. Push rod
- ▲ 9. Cylinder head
 - 10. Cylinder head gasket

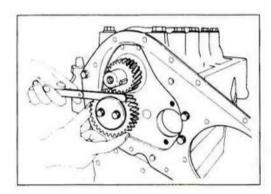
Important Operations

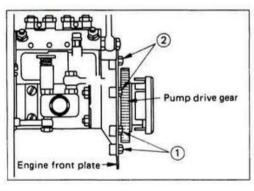
▲ Timing Gear Case

After the timing gear case removal, measure the timing gear backlash.

Timing Gear Backlash Measurement

- Set a dial indicator to the timing gear to be measured.
 - Hold both the gear to be checked and the adjoining gear stationary.
- Move the gear tooth side to side in the backlash. Take the indicator reading of the backlash.


Timing Gear Backlash (TIR)


mm (in)

Standard	Limit	
0.10 - 0.17 (0.004 - 0.007)	0.30 (0.012)	

TIR = Total Indicator Reading

If the measured value exceeds the specified limit, the gear must be replaced.

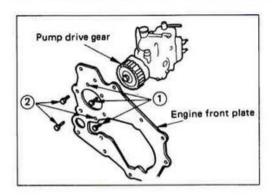
Idler Gear End Play Measurement

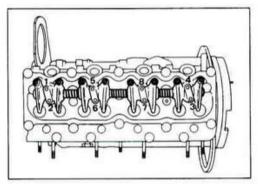
Insert a feeler gauge between the idler gear and the thrust collar to measure the gap and determine the idler gear end play.

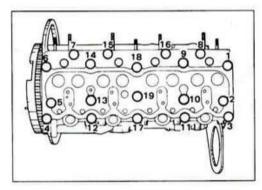
If the measured value exceeds the specified limit, the thrust collar must be replaced.

Idler Gear End Play

mm (in)


Standard	Limit	
0.07 (0.003)	0.2 (0.008)	


▲ Injection Pump with Driver Gear (In-Line Type)


The injection pump can be removed after the idler gear removal.

- 1) Remove the injection pump fixing bolt ① and ②.
- Pull the injection pump out free from the engine front plate.

▲ Injection Pump with Drive Gear (Distributor Type)

The removal procedure for the distributor type injection pump is identical with that of the in-line type injection pump.

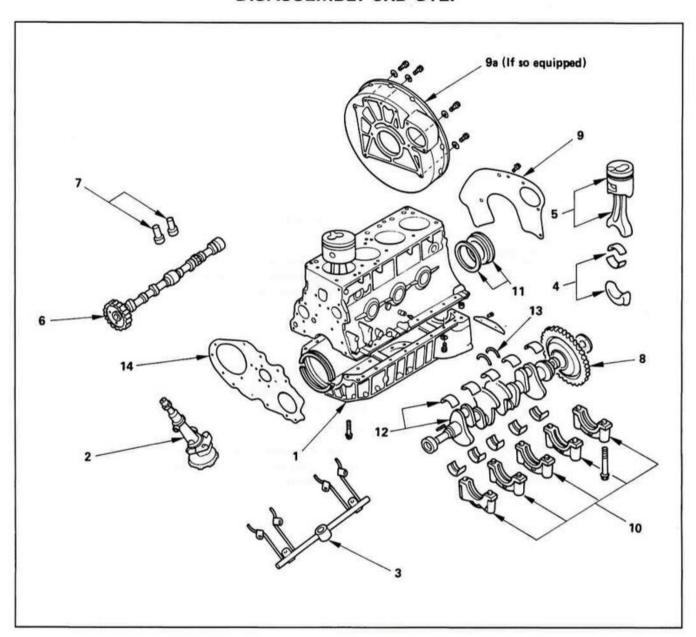
Before the removal, make sure that the injection pump bracket bolts fixing the pump body at the pump bottom has already been removed in the Disassembly 1st Step.

A Rocker Arm Shaft and Rocker Arm

Loosen the rocker arm shaft bracket bolts in numerical order a little at a time.

Note:

Failure to loosen the rocker arm shaft bracket bolts in numerical order a little at a time will adversely effect the rocker arm shaft.


▲ Cylinder Head

Loosen the cylinder head bolts in the numerical order a little at a time.

Note:

Failure to loosen the cylinder head bolts in numerical order a little at a time will adversely effect the cylinder lower surface.

DISASSEMBLY 3RD STEP

Disassembly Steps

(Inverted Engine)

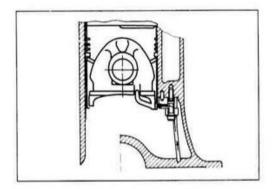
- 1. Crankcase
- ▲ 2. Oil pump
- ▲ 3. Oiling jet (If so equipped)
- 4. Connecting rod bearing cap and bearing lower half

(Overturn to the normal position)

- ▲ 5. Piston and connecting rod
- ▲ 6. Camshaft
- ▲ 7. Tappet

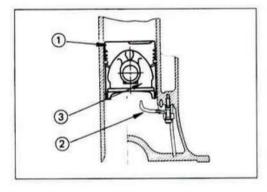
- ▲ 8. Flywheel
 - 9. Rear plate
 - 9a Flywheel housing (If so equipped)
- ▲ 10. Main bearing cap and bearing
- ▲ 11. Oil seal
- ▲ 12. Crankshaft and bearing upper halves
 - 13. Thrust bearing
 - 14. Front plate

▲ Crankcase


A slit to provided on the crankcase mounting flange to facilitate the crankcase removal.

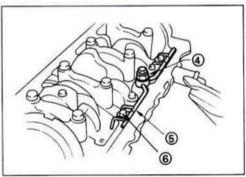
Use a screw driver or such like to peel off the crankcase at the slit.

▲ Oil Pump


- Disconnect the oil pipe at the sleeve nut.
- 2) Remove the oil pump mounting bolt and remove the oil pump along with the oil pipe.
- 3) Remove the oil pipe from the pump.

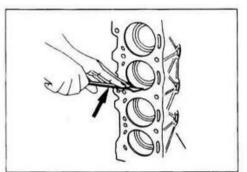
▲ Oiling Jet (If so equipped)

The oiling jet used thin steel tubing which is easily bent. When the piston is at BCD, it is very close to the oiling


Carefully follow the procedure below to avoid damaging the oiling jets.

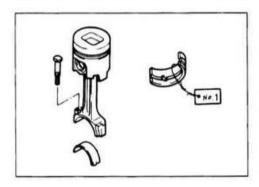
1) Move the piston ① to near TDC.

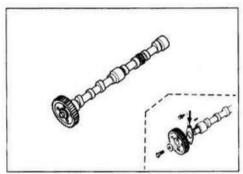
This will create a space between the oiling jet ② and the piston back cavity 3.


2) Remove the relief valve 4 (attached to the piston cooling oil pipe (5)) and the bolts (6).

Note:

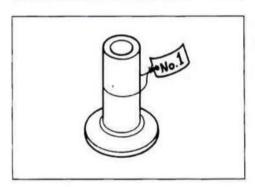
Do not attempt to repair an oiling jet if it is damaged. Replace it with a new one.


▲ Piston and Connecting Rod


Remove carbon deposits from the upper portion of the cylinder wall with a scraper before removing the piston and connecting rod.

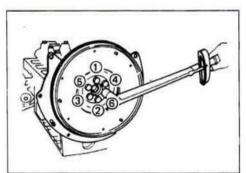
Move the piston to the top of the cylinder and tap it with a hammer grip or similar object from the connecting rod lower side to drive it out.

3) If the connecting rod bearings are to be reused, mark and tag their original installation position to facilitate the reinstallation.



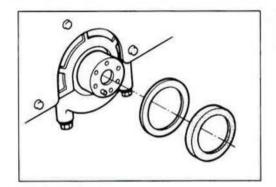
▲ Camshaft

- Remove the thrust plate bolts.
- Pull the camshaft free along with the camshaft timing gear and the thrust plate.


Be careful not to damage the camshaft journal, the cam, and the camshaft during the disassembly procedure.

▲ Tappet

If the tappets are to be reinstalled, tag them with the mark of original fitting cylinder number.



▲ Flywheel

Block the flywheel with a piece of hard wood.

Loosen the flywheel bolts in numerical order a little at a time.



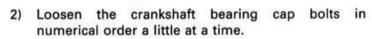
▲ Oil Seal

Be careful not to scratch the crankshaft rear oil seal fitting surfaces during the removal procedure.

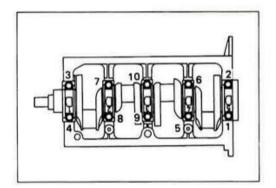
1

▲ Main Bearing Cap and Bearing

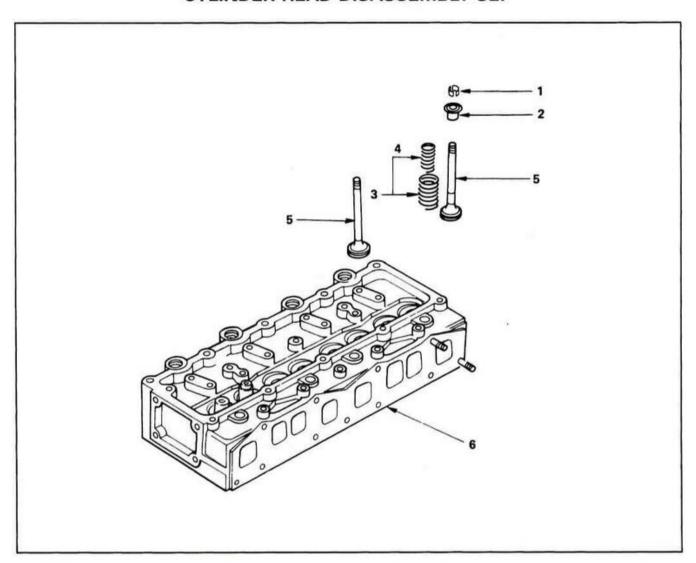
Measure the crankshaft end play at the center journal of the crankshaft.


Do this before removing the crankshaft bearing caps.

If the measured value exceeds the specified limit, the crankshaft thrust bearing must be replaced.

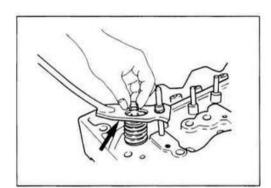

Crankshaft End Play

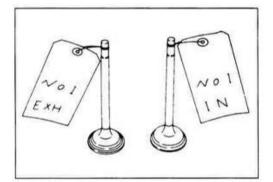
mm (in)


Standard	Limit
0.10 (0.004)	0.30 (0.012)

If the crankshaft bearings are to be reinstalled, tag them with their original installation position

CYLINDER HEAD DISASSEMBLY SEP




Disassembly Steps

- ▲ 1. Split collar
 - 2. Valve spring upper seat
 - 3. Valve spring (Outer)

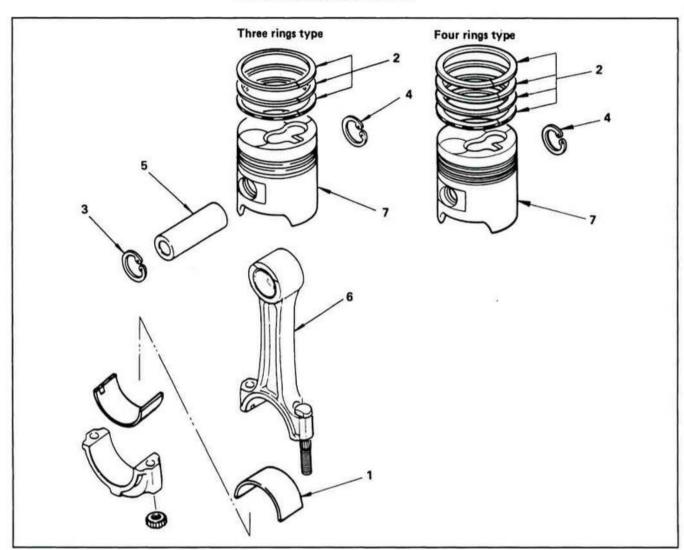
- 4. Valve spring (Inner)
- ▲ 5. Intake and exhaust valves
 - 6. Cylinder head

Important Operations

▲ Split Collar

1) Place the cylinder head on a flat wooden surface.

Use the spring compressor to remove the split

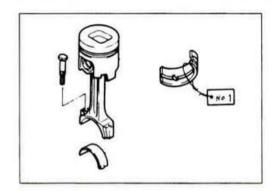

Do not allow the valve to fall from the cylinder head. Spring Compressor: 9-8523-1423-0 (J-29760)

▲ Intake and Exhaust Valves

If the intake and exhaust valves are to be reinstalled, mark their installation positions by tagging each valve with the cylinder number from which it was removed.

If the intake and exhaust valves are to be replaced, the valve guides must also be replaced.

PISTON AND CONNECTING ROD DISASSEMBLY STEP



Disassembly Steps

- ▲ 1. Connecting rod bearing
- ▲ 2. Piston ring
- ▲ 3. Piston pin snap ring
- ▲ 4. Piston pin snap ring

- ▲ 5. Piston pin
 - 6. Connecting rod
- ▲ 7. Piston



Important Operations

▲ Connecting Rod Bearing

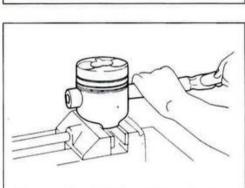
If the connecting rod bearings are to be reinstalled, tag them with mark of their original cylinder number.

▲ Piston Ring

1) Clamp the connecting rod in a vise.

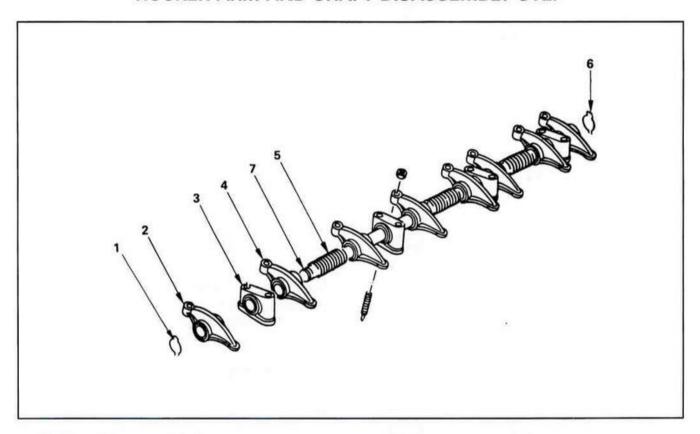
Take care not to damage the connecting rod.

Use a piston pin replacer to remove the piston rings. Piston Ring Replacer


Do not attempt to use some other tool to remove the piston rings. Piston ring stretching will result in reduced piston ring tension.

▲ Piston Pin Snap Ring

Use a pair of snap ring pliers to remove the piston pin snap ring.


▲ Piston Pin

▲ Piston

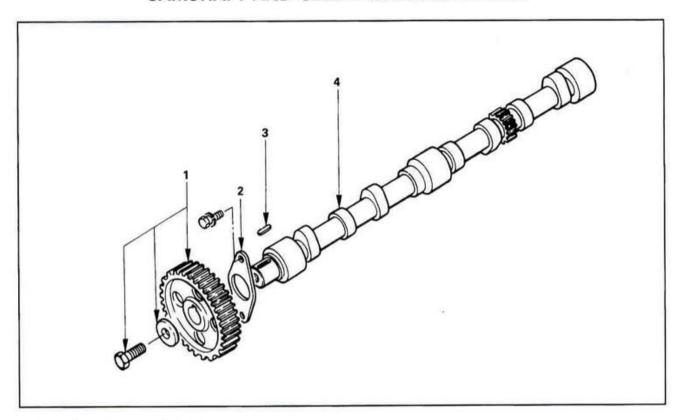
Tap the piston pin out with a hammer and a brass bar.

If the pistons and piston pins are to be reinstalled, mark their installation positions by tagging each piston and piston pin with the cylinder number from which it was removed.

ROCKER ARM AND SHAFT DISASSEMBLY STEP

Disassembly Steps

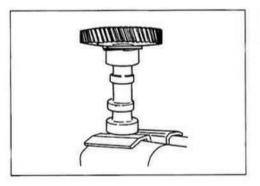
- ▲ 1. Rocker arm shaft snap ring
- ▲ 2. Rocker arm "A"
 - 3. Rocker arm shaft bracket
 - 4. Rocker arm "D"


- 5. Rocker arm shaft spring
 - 6. Rocker arm shaft snap ring
- 7. Rocker arm shaft

Important Operations

- ▲ Rocker Arm Shaft Snap Ring
- ▲ Rocker Arm "A"
- Use a pair of snap ring pliers to remove the snap ring.
- 2) Remove rocker arm "A".

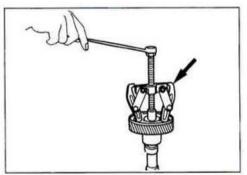
CAMSHAFT AND GEAR DISASSEMBLY STEP



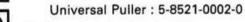
Disassembly Steps

- ▲ 1. Camshaft timing gear
- ▲ 2. Thrust plate

- 3. Feather key
- 4. Camshaft



Important Operations



- ▲ Camshaft Timing Gear
- **▲ Thrust Plate**
- Clamp the camshaft in a vise.
 Take care not to damage the camshaft.

2) Use the universal puller to pull out the camshaft timing gear.

Remove the thrust plate.

SECTION 4

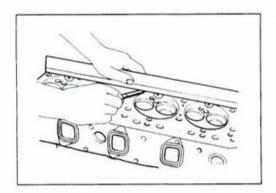
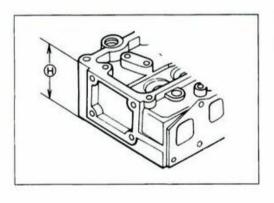

ENGINE ASSEMBLY (2) (INSPECTION AND REPAIR)

TABLE OF CONTENTS


ITEM F	AGE
Cylinder head	52
Hot plug	53
Valve guide	56
Valve and valve seat insert	58
Valve spring	61
Rocker arm shaft and rocker arm	62
Cylinder body	64
Piston	70
Piston ring	71
Piston pin	72
Connecting rod	73
Tappet and push rod	74
Camshaft	75
Crankshaft and bearing	78
Flywheel and ring gear	85
Idler gear shaft and idler gear	86
Timing gear case cover	86

INSPECTION AND REPAIR

Make the necessary adjustments, repairs, and part replacements if excessive wear or damage is discovered during inspection.

A IF B

CYLINDER HEAD

Cylinder Head lower Face Warpage

- Use a straight edge and a feeler gauge to measure the four sides and the two diagonals of the cylinder head lower face.
- Regrind the cylinder head lower face if the measured values are greater than the specified limit but less than the maximum grinding allowance.

If the measured values exceed the maximum grinding allowance, the cylinder head must be replaced.

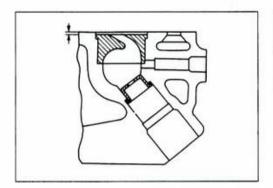
Cylinder Head Lower Face Warpage

mm (in)

Standard	Limit	Maximum Grinding Allowance
0.05	0.2	0.30
(0.002) or less	(0.008)	(0.012)

Cylinder Head Height

Cylinder Head Height (Reference)


mm(in)

Standard (H)	Limit
91.95 - 92.05 (3.622 - 3.626)	91.75 (3.614)

Note:

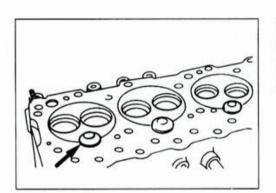
If the cylinder head lower face is reground, valve depression must be checked.

HOT PLUG

雪

Hot Plug Depression

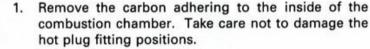
 Clean the cylinder head lower face, taking care not to damage the hot plug surfaces.

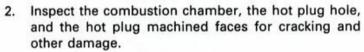

 Use a straight edge and a feeler gauge to measure the hot plug depression in a straight line from the No. 1 hot plug to the No. 4 hot plug.

If the measured value exceeds the specified limit, the hot plugs must be replaced.

Hot Plug Depression

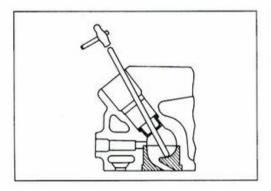
mm (in)


Limit	
 0.02 (0.0008)	



10

Combustion Chamber Inspection



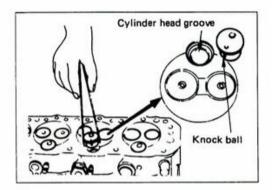
If cracking or damage is present, the cylinder head must be replaced.

Note:

Be absolutely certain that there are no scratches or protuberances on the combustion chamber surfaces which will be in contact with the hot plug after it is installed. These flaws will prevent the hot plug from seating correctly.

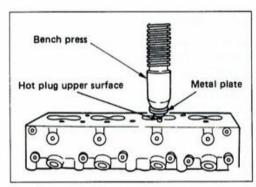
Hot Plug Replacement

Hot Plug Removal


- Insert a 3.0 5.0 mm (0.12 0.20 in) diameter brass bar into the nozzle holder fitting hole until it makes contact with the hot plug.
- Lightly tap the bar with a hammer to drive the hot plug free.

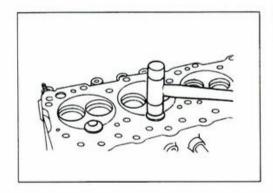
Hot Plug Inspection

Inspect the hot plugs for excessive wear and other damage. Replace the hot plugs if either of these conditions are discovered.


Refer to "Hot Plug Installation".

Hot Plug Installation

 Align the hot plug knock ball with the cylinder head groove and tap it temporarily into position with a plastic hammer.

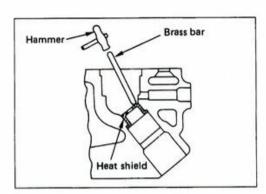

- Place a metal plate approximately 25 mm (1 in) thick over the hot plug upper surface.
- Use a bench press to exert a pressure of 4,500 5,500 kg (9,923 – 12,128 lb/44,100 – 53,900 N) on the metal plate covering the hot plug upper surface. This will drive the hot plug into position.
- Lightly tap the hot plug head to make sure that it is firmly seated.
- Repeat the procedure (Steps 1 4) for the remaining hot plugs.

Note:

Do not apply pressure greater than that specified. Damage to the cylinder head will result.

Use a surface grinder to grind off any hot plug surface protuberances.

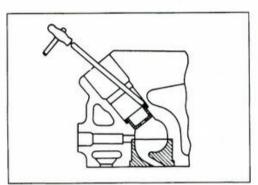
The hot plug surfaces must be perfectly flush with the cylinder head lower face.



7. After grinding, make sure that the hot plug surfaces are completely free of protuberances.

The hot plug surfaces must also be free of depressions.

Once again, lightly tap the hot plug heads to make sure that they are firmly seated.

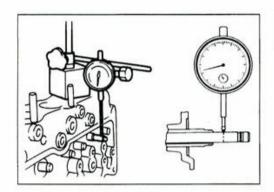


Heat Shield Replacement

Heat Shield Removal

After removing the hot plugs, use a hammer and a brass bar to lightly tap the lower side of the heat shield and drive it free.

Heat Shield Installation


Install the heat shield to the cylinder head from the nozzle holder installation hole side. Lightly tap the heat shield flange into place with a hammer and a brass bar.

The heat shield flange side must be facing up.

Note:

Always install a new heat shield. Never reuse the old heat shield.

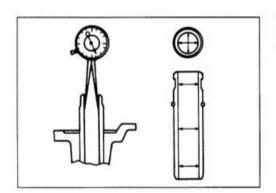
VALVE GUIDE

1

Valve Stem and Valve Guide Clearance Measuring Method-I

- With the valve stem inserted in the valve guide, set the dial indicator needle to "0".
- 2. Move the valve head from side to side.

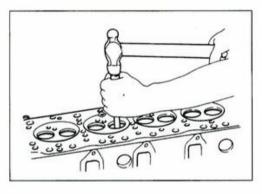
Read the dial indicator.


Note the highest dial indication.

If the measured values exceed the specified limit, the valve and the valve guide must be replaced as a

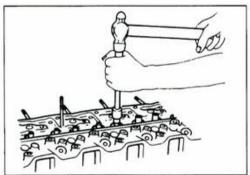
Valve Stem Clearance

mm (in)


	Standard	Limit	
Intake Valve	0.039 - 0.069 (0.0015 - 0.0027)	0.20 (0.008)	
Exhaust Valve	0.064 - 0.093 (0.0025 - 0.0037)	0.25 (0.0098)	

Measuring Method -II

- Measure the valve stem outside diameter. Refer to the Item "Valve Stem Outside Diameter".
- Use a caliper calibrator or a telescoping gauge to measure the valve guide inside diameter.



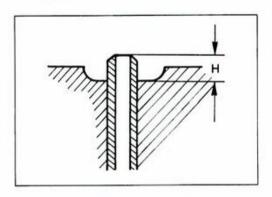
Valve Guide Replacement Valve Guide Removal

Use a hammer and the valve guide replacer to drive out the valve guide from the cylinder head lower face.

Valve Guide Replacer: 5-8523-0002-0 (J-26512-1)

Valve Guide Installation

Apply engine oil to the valve guide outer circumference.

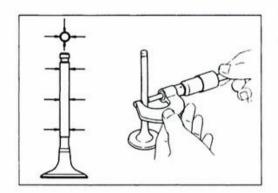

Attach the valve guide installer to the valve guide.

Use a hammer to drive the valve guide into position from the cylinder head upper face.

Valve Guide Installer: 5-8523-0002-0 (J-26512-2)

4. Measure the height of the valve guide upper end from the upper face of the cylinder head.

Valve Guide Upper End Height (H) (Refereance)


mm (in)

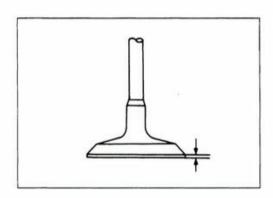
12.0 (0.47)

Note:

If the valve guide has been removed, both the valve and the valve guide must be replaced as a set.

VALVE AND VALVE SEAT INSERT

Valve Stem Outside Diameter


Measure the valve stem diameter at three points.

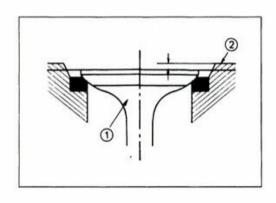
If the measured value is less than the specified limit, the valve and the valve guide must be replaced as a set.

Valve Stem Outside Diameter

mm (in)

	Standard	Limit	
Intake Valve	7.949 - 7.961 (0.3129 - 0.3134)	7.88 (0.3102)	
Exhaust Valve	7.921 - 7.936 (0.3118 - 0.3124)	7.85 (0.3091)	

Valve Thickness


Measure the valve thickness

If the measured value is less than the specified limit, the valve and the valve guide must be replaced as a set.

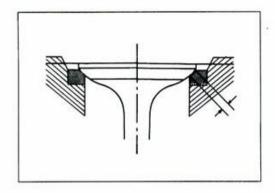
Intake and Exhaust Valve Thickness

mm (in)

Standard	Limit
1.3 (0.05)	1.0 (0.04)

Valve Depression

- Install the valve 1 to the cylinder head 2.
- Use a depth gauge or a straight edge with steel rule to measure the valve depression from the cylinder head lower surface.


If the measured value exceeds the specified limit, the valve seat insert must be replaced.

Valve Depression

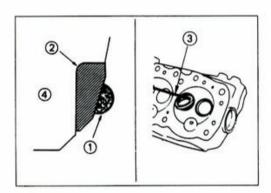
mm (in)

Standard	Limit	
0.7 (0.028)	2.7 (0.11)	

Valve Contact Width

Check the valve contact faces for roughness and unevenness.

Make smooth the valve contact surfaces.

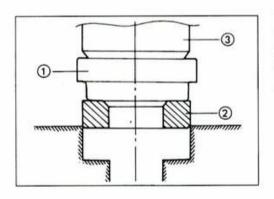

Measure the valve contact width.

If the measured value exceeds the specified limit, the valve seat insert must be replaced.

		-			
Va	ve	Con	tact	W	idth

mm (in)

Standard	Limit
1.2 - 1.5 (0.05 - 0.06)	2.0 (0.08)



Valve Seat Insert Replacement Valve Seat Insert Removal

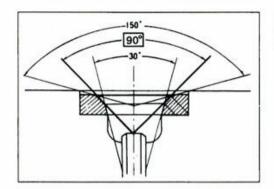
- Arc weld the entire inside circumference (1) of the valve seat insert (2).
- Allow the valve seat insert to cool for a few minutes. This will invite contraction and make removal of the valve seat insert easier.
- 3. Use a screwdriver 3 to pry the valve seat insert

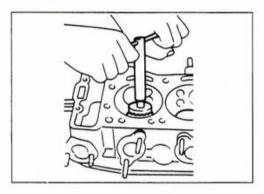
Take care not to damage the cylinder head 4.

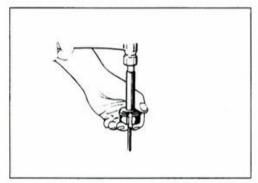
4. Carefully remove carbon and other foreign material from the cylinder head insert bore.

Valve Seat Insert Installation

Carefully place the attachment (1) (having a smaller outside diameter than the valve seat insert) on the valve seat insert (2).




The smooth side of the attachment must contact the valve seat insert.


Use a bench press 3 to gradually apply pressure to the attachment and press the valve seat insert into place.

Do not apply an excessive amount of pressure with the bench press. Damage to the valve seat insert will result.

Valve Seat Insert Correction

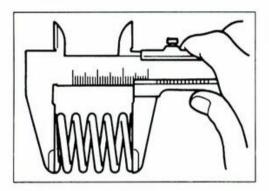
- Remove the carbon from the valve seat insert surface.
- Use a valve cutter (15°, 45°, and 75° blades) to minimize scratches and other rough areas. This will bring the contact width back to the standard value.

Remove only the scratches and rough areas. Do not cut away too much. Take care not to cut away unblemished areas of the valve seat surface.

Valve Seat Angle

degree

45


Note:

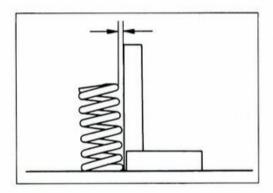
Use an adjustable valve cutter pilot.

Do not allow the valve cutter pilot to wobble inside the valve guide.

- 3. Apply abrasive compound to the valve seat insert surface.
- 4. Insert the valve into the valve guide.
- Turn the valve while tapping it to fit the valve seat
- Check that the valve contact width is correct.
- Check that the valve seat insert surface is in contact with the entire circumference of the valve.

VALVE SPRING

Valve Spring Free Height


Use a vernier caliper to measure the valve spring free height.

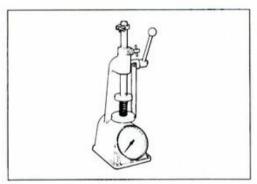
If the measured value is less than the specified limit, the valve spring must be replaced.

Inner and Outer Spring Free Height

mm (in)

	Standard	Limit
Inner	47.9 (1.89)	46.5 (1.83)
Outer	47.3 (1.86)	45.8 (1.80)

Valve Spring Inclination


Use a surface plate and a square to measure the valve spring inclination.

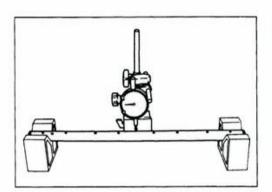
If the measured value exceeds the specified limit, the valve spring must be replaced.

Inner and Outer Spring Inclination

mm (in)

1.0 (0.04)

Valve Spring Tension


Use a spring tester to measure the valve spring tension. If the measured value is less than the specified limit, the valve spring must be replaced.

Valve Spring Tension

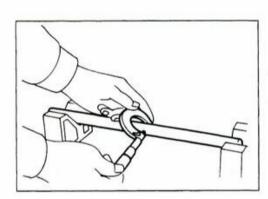
kg (lb/N)

	Compressed Height	Standard	Limit
Inner Spring	37.0 mm (1.46 in)	5.55 - 6.25 (12.21 - 13.78/ 54.39 - 61.25)	5.0 (11.03/ 49.00)
Outer Spring	39.0 mm (1.54 in)	19.65 - 22.15 (43.33 - 48.84/ 192.57 - 217.07)	18.0 (39.69/ 176.40)

ROCKER ARM SHAFT AND ROCKER ARM

Rocker Arm Shaft Run-Out

- Place the rocker arm shaft on a V-block.
- Use a dial indicator to measure the rocker arm shaft central portion run-out.


If the run-out is very slight, correct the rocker arm shaft run-out with a bench press. The rocker arm must be at cold condition.

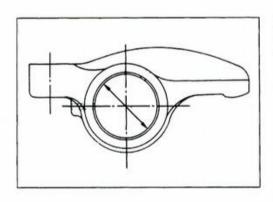
If the measured rocker arm shaft run-out exceeds the specified limit, the rocker arm shaft must be replaced.

Rocker Arm Shaft Run-Out

mm (in)

Limit	
0.6 (0.0024)	

Rocker Arm Shaft Outside Diameter


Use a micrometer to measure the rocker arm fitting portion outside diameter.

If the measured value is less than the specified limit, the rocker arm shaft must be replaced.

Rocker Arm Shaft Outside Diameter

mm (in)

Standard	Limit
18.98 - 19.00	18.90 (0.744)
(0.747 - 0.748)	18.30 (0.744)

Rocker Arm Shaft and Rocker Arm Clearance

Use either a vernier caliper or a dial indicator to measure the rocker arm bushing inside diameter.

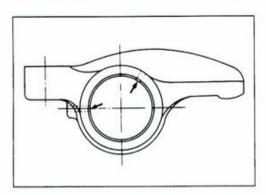
Rocker Arm Bushing Inside Diameter

mm (in)

Standard	Limit
19.036 - 19.060 (0.749 - 0.750)	19.10 (0.752)

Measure the rocker arm shaft outside diameter.

If the measured value exceeds the specified limit, replace either the rocker arm or the rocker arm shaft.


Rocker Arm and Rocker Arm Shaft

Clearance

mm (in)

Limit
0.20 (0.008)



Check that the rocker arm oil port is free of obstructions.

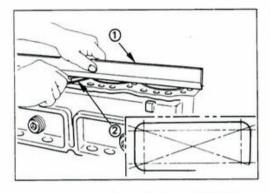
If necessary, use compressed air to clean the rocker arm oil port.

Rocker Arm Correction

Inspect the rocker arm valve stem contact surfaces for step wear 1) and scoring 2).

If the contact surfaces have light step wear or scoring, they may be honed with an oil stone.

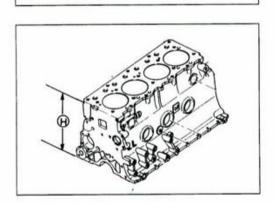
If the step wear or scoring is severe, the rocker arm must be replaced.



Cylinder Body Upper Face Warpage

- 1. Remove the cylinder body dowel
- 2. Remove the cylinder liner (If so equipped). Refer to "Cylinder Liner Replacement".

- Use a straight edge 1 and a feeler gauge 2 to measure the four sides and the two diagonals of the cylinder body upper face.
- Regrind the cylinder body upper face if the measured values are greater than the specified limit but less than the maximum grinding allowance.

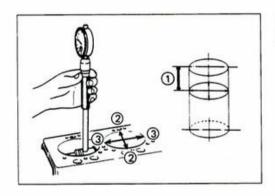

If the measured values exceed the maximum grinding allowance, the cylinder body must be replaced.

Cylinder Body Upper Face Warpage

mm (in)

Standard	Limit	Maximum Grinding Allowance
0.05 (0.002) or less	0.2 (0.008)	0.4 (0.016)

If the measured value is less than the limit, the cylinder body may be reground.



Cylinder Body Height (H) (Reference)

mm (in)

Standard	Limit	
273 (10.756)	272.6 (10.740)	

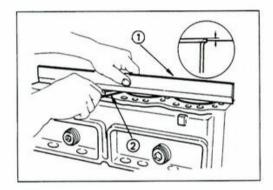
- 5. Reinstall the cylinder liner (If so equipped). Refer to "Cylinder Body Bore Measurement".
- 6. Reinstall the cylinder body dowel.

Cylinder Liner Bore Measurement

Use a cylinder indicator to measure the cylinder liner bore at measuring position 1 in the thrust 2 - 2 and axial 3 - 3 directions of the crankshaft.

Measuring Point 1: Where is a most worn point at 15 - 19 mm (0.59 - 0.75 in).

If the measured value exceeds the specified limit, the cylinder liner must be replaced.


mm (in)

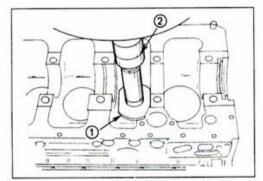
Standard	Limit
86.0 (3.388)	86.2 (3.396)

Note:

The inside of the dry type cylinder liner is chrome plated. It cannot be rebored or honed.

If the inside of the cylinder liner is scored or scorched, the cylinder liner must be replaced.

Cylinder Liner Projection Inspection


- Hold a straight edge ① along the top edge of the cylinder liner to be measured.
- Use a feeler gauge ② to measure each cylinder liner projection.

Cylinder Liner Projection

mm (in)

Standard	
0 - 0.10 (0 - 0.004)	

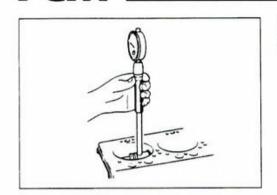
The difference in the cylinder liner projection height between any two adjacent cylinders must not exceed 0.03 mm (0.0012 in).

Cylinder Liner Replacement

Cylinder Liner Removal

 Insert the cylinder liner remover ① into the cylinder body (from the lower side of the cylinder body) until it makes firm contact with the cylinder liner.

Cylinder Liner Remover: 5-8523-2552-0


Grip: 9-8522-1148-0

Use a bench press ② to slowly force the cylinder liner from the cylinder body.

Note:

Take care not to damage the cylinder body upper face during the cylinder liner removal procedure.

Measure the cylinder body upper face warpage.Refer to "Cylinder Body Upper Face Warpage".

1

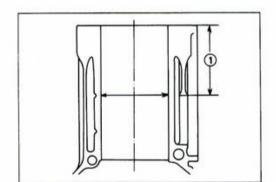
Cylinder Bore Measurement

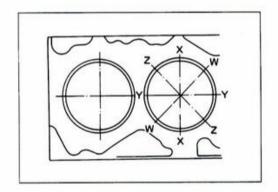
Cylinder Liner Grade Selection

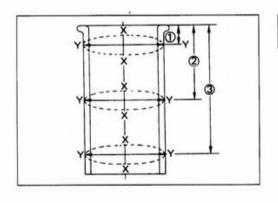
The term "grade" refers to the cylinder body inside diameter and the cylinder liner outside diameter combination.

Measure the cylinder body bore and select the appropriate cylinder liner grade.

Loose fitting cylinder liners (the liner is too small for the cylinder bore) will adversely affect engine cooling efficiency and may lead to serious engine damage.


Cylinder liners which are too large for the cylinder bore will be difficult to install.


Standard Fitting Interference


mm (in)

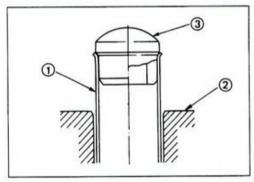
0 - 0.02(0 - 0.0007)

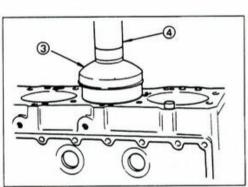
- Take measurements at measuring point ① across the positions W - W, X - X, Y - Y, and Z - Z.
 Measuring Point ①:
- Calculate the average value of the four measurements to determine the correct cylinder liner grade.

Cylinder Liner Outside Diameter Measurement

 Take two measurements at measuring points ①, ②, and ③.

Meas	uring	Points


mm (in)


①	20.0 (0.79)
2	90.0 (3.54)
3	140.0 (5.50)

Calculate the average value of the six measurements to determine the correct cylinder liner grade. Cylinder Bore and Cylinder Liner Grade Combination (Reference)

mm (in)

Grade	Cylinder Bore	Cylinder Liner Outside Diameter
1	88.001 - 88.010 (3.4672 - 3.4675)	88.011 - 88.020 (3.4675 - 3.4679)
2	88.011 - 88.020 (3.4675 - 3.4679)	88.021 - 88.030 (3.4679 - 3.4683)
3	88.021 - 88.030 (3.4679 - 3.4683)	88.031 - 88.040 (3.4683 - 3.4687)
4	88.031 - 88.040 (3.4683 - 3.4687)	88.041 - 88.050 (3.4687 - 3.4691)

Cylinder Liner Installation

- 1. Cylinder Liner Installation Using The Special Tool
 - Use new kerosene or diesel oil to thoroughly clean the cylinder liners and bores.
 - Use compressed air to blow-dry the cylinder liner and bore surfaces.

All foreign material must be carefully removed from the cylinder liner and the cylinder bore before installation.

- 3) Insert the cylinder liner ① into the cylinder body② from the top of the cylinder body.
- Set the cylinder liner installer 3 to the top of the cylinder liner.
 - Cylinder Liner Installer: 9-8523-2551-0
- Position the cylinder body so that the installer center 3 is directly beneath the bench press shaft center 4.

Note:

Check that the cylinder liner is set perpendicular to the bench press and that there is no wobble.

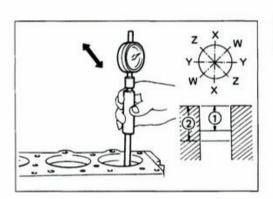
- 6) Use the bench press to apply a seating force of 500 kg (1,102.5 lb/4,900 N) to the cylinder liner.
- Apply a force of 2,500 kg (5,512.5 lb/24,500 N) to fully seat the cylinder liner.
- After installing the cylinder liner, measure the cylinder liner projection.
 - Refer to "Cylinder Liner Projection Inspection".

2. Cylinder Liner Installation Using Dry Ice

Cooling the cylinder liner with dry ice will cause the cylinder liner to contract, thus making installation easier.

Note:

It is important that the cylinder liner be inserted to the cylinder body immediately after it has been cooled.


WARNING:

DRY ICE MUST BE USED WITH GREAT CARE. CARE-LESS HANDLING OF DRY ICE CAN RESULT IN SEVERE FROSTBITE.

Piston Grade Selection

The term "piston grade" refers to the piston diameter and cylinder liner bore combination.

Selection of the proper piston grade will ensure efficient engine operation, free from cylinder liner and piston problems.

Cylinder Liner Bore Measurement

Measure the cylinder liner bore after installing the cylinder liner. Then select the appropriate piston grade for the installed cylinder liner.

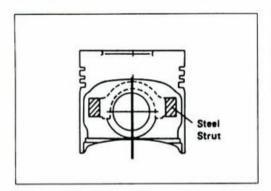
Measure the cylinder liner bore.

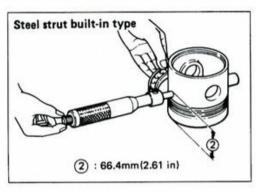
Refer to "Cylinder Liner Bore Measurement".

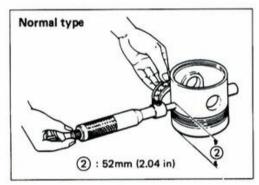
Measuring Points (1): 20 mm (0.79 in) 140 mm (5.51 in)

- 2. Measure the cylinder liner bore at measuring point 1) and 2) in four different directions (W - W, X - X, Y - Y, and Z - Z).
- 3. Calculate the average value of the eight measurements.

Cylinder Liner Bore


mm (in)


86.021 - 86.060 (3.389 - 3.390)


Note:

It is most important that the correct piston grade be used. Failure to select the correct piston grade will result in engine failure. Always measure the cylinder bore and select the correct piston grade.

Piston Outside Diameter

- 1. Piston outside diameter vary depending on the piston type to be used.
- 2. Measure the piston outside diameter at the measuring piston (2) shown in the illustration.

Piston Grade

1) Steel Strut Built-in Type (Autothermatic Type)

You can find steel strut on the inner surface of piston as shown in the illustration.

Piston Grade and Piston Diameter

mm (in)

A	85.976 - 85.995 (3.3874 - 3.3882)
©	85.996 - 86.015 (3.3882 - 3.3889)

2) Normal Type

Piston Grade and Piston Diameter

mm (in)

(A)	85.864 - 85.883 (3.3830 - 3.3837)
©	85.884 - 85.903 (3.3838 - 3.3845)

Cylinder Liner Bore and Piston Clearance

1) Steel Strut Built-in Type

Cylinder Liner Bore and Piston Clearance

mm (in)

0.035 - 0.065 (0.0013 - 0.0025)

2) Normal Type

Cylinder Liner Bore and Piston Clearance

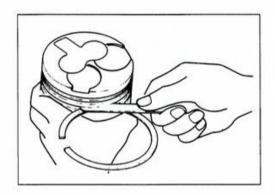
mm (in)

0.146 - 0.196 (0.0057 - 0.0077)

Note:

Cylinder liner piston kit clearances are preset. However, the cylinder liner installation procedure may result in slight decreases in cylinder liner bore clearances.

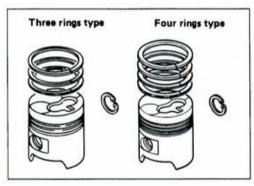
Always measure the cylinder liner bore clearance after installation to be sure that it is correct.



PISTON

Piston Grade Selection and Cylinder Bore Measurement

Refer to the Section "CYLINDER BODY", Items "Cylinder Bore Measurement" and "Cylinder Liner Bore Measurement" for details on piston grade selection and cylinder or liner bore measurement.



Piston Ring and Piston Ring Groove Clearance

Use a feeler gauge to measure the clearance between the piston ring and the piston ring groove at several points around the piston.

If the clearance between the piston ring and the piston ring groove exceeds the specified limit, the piston ring must be replaced.

Three Rings Type

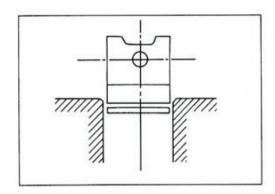
Piston Ring and Piston Ring

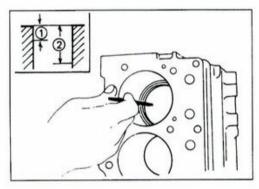
Groove Clearance

mm (in)

	Standard	Limit	
1st Compression Ring	0.09 - 0.11 (0.0035 - 0.0043)	0.3	
2nd Compression Ring	0.030 - 0.055 (0.0012 - 0.0021)	(0.012)	
Oil Ring	0.020 - 0.055 (0.0008 - 0.0021)	0.15 (0.0059)	

Four Rings Type


Piston Ring and Piston Ring


Groove Clearance

mm(in)

	Standard	Limit
1st Compression Ring	0.045 - 0.070 (0.0017 - 0.0027)	0.15 (0.0059)
2nd Compression Ring	0.045 - 0.070 (0.0017 - 0.0027)	0.15 (0.0059)
3rd Compression Ring	0.045 - 0.070 (0.0017 - 0.0027)	0.15 (0.0059)
Oil Ring	0.020 - 0.055 (0.0008 - 0.0021)	0.15 (0.0059)

PISTON RING

Piston Ring Gap

- Insert the piston ring horizontally (in the position it would assume if it were installed to the piston) into the cylinder liner bore.
- Use an inverted piston to push the piston ring into the cylinder liner until it reaches either measuring point (1) or the measuring point (2). Cylinder liner diameter is smallest at these two points.

Do not allow the piston ring to slant to one side or the other. It must be perfectly horizontal.

Cylinder Liner Measuring Point (1): 10 mm (0.39 in)

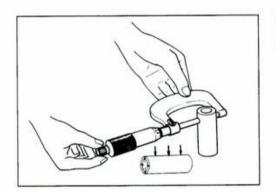
Cylinder Liner Measuring Point 2: * A point where liner diameter is smallest.

Use a feeler gauge to measure the piston ring gap. If the measured value exceeds the specified limit, the piston ring must be replaced.

Piston Ring Gap

mm (in)

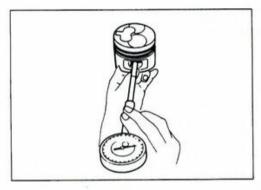
	Standard	Limit
1st Compression	0.2 - 0.4	1.5
Ring Gap	(0.0079 - 0.0158)	(0.0591)
2nd Compression	0.2 - 0.4	1.5
Ring Gap	(0.0079 - 0.0158)	(0.0591)
3rd Compression	0.2 - 0.4	1.5
Ring Gap*	(0.0079 - 0.0158)	(0.0591)
Oil Ring Gap	0.1 - 0.3 (0.0039 - 0.0118)	1.5 (0.0591)


* Where the Four Rings Type is used.

piston must be replaced.

Visually inspect the piston rings. If a piston ring groove is damaged or distorted, the

Piston Pin Diameter


Use a micrometer to measure the piston pin outside diameter at several points.

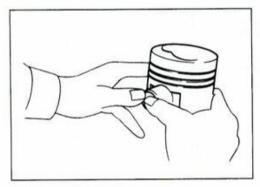
If the measured value is less than the specified limit, the piston pin must be replaced.

Piston Pin Diameter

mm (in)

Standard	Limit
27.01 (1.0638)	26.97 (1.0626)

Piston Pin and Piston Clearance

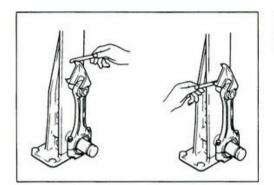

Use an inside dial indicator to measure the piston pin hole (in the piston).

Piston Pin Hole

mm (in)

	Standard
26.988	- 26.997 (1.0633 - 1.0637)

Piston Pin and Piston Pin Hole	mm (in)
0 - 0.005 (0 - 0.0002)	



If an inside dial indicator is not available, use the following procedure to check the piston pin clearance.

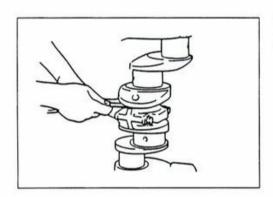
- 1. Use a piston heater to heat the piston to approximately 100°C (220°F)
- Push strongly against the piston pin with your thumbs.

The piston pin should move smoothly with little or no resistance.

CONNECTING ROD

Connecting Rod Alignment

Use a connecting rod aligner to measure the distortion and the parallelism between the connecting rod big end hole and the connecting rod small end hole.


If either the measured distortion or parallelism exceed the specified limit, the connecting rod must be replaced.

Connecting Rod Alignment

Per Length of 100 mm (3.94 in)

mm (in)

	Standard	Limit
Distortion	0.08 or Less (0.0030)	0.20 (0.008)
Parallelism	0.05 or Less (0.0020)	0.15 (0.006)

Connecting Rod Side Face Clearance

- Install the connecting rod to the crankpin.
- Use a feeler gauge to measure the clearance between the connecting rod big end side face and the crankpin web face.

If the measured value exceeds the specified limit, the connecting rod must be replaced.

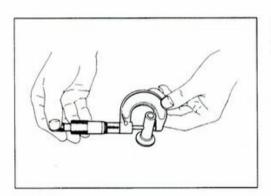
Connecting Rod Big End and Crankpin Web

Face Clearance

mm (in)

Standard	Limit
0.23 (0.009)	0.35 (0.014)

TAPPET AND PUSH ROD

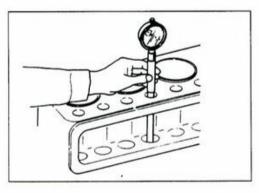

Visually inspect the tappet contact surfaces for pitting, cracking, and other abnormal conditions. The tappet must be replaced if any of these conditions are present.

Refer to the illustration at the left.

- Normal contact
- (2) Cracking
- ③ Pitting
- Uneven contact (4)
- One-sided contact

Note:

The tappet surfaces are spherical. Do not grind them with an oil stone or similar tool in an attempt to repair the tappet. If the tappet is damaged, it must be replaced.

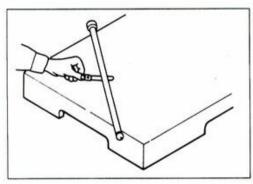

Tappet Outside Diameter

(0.510 - 0.511)

Measure the tappet outside diameter with a micrometer.

If the measured value is less than the specified limit, the tappet must be replaced.

Tappet Outside Diameter	mm (in	
Standard	Limit	
12.97 - 12.99	12.95 (0.509)	



Tappet and Cylinder Body Clearance

mm (in)

Standard	Limit
0.03 (0.001)	0.1 (0.004)

Push Rod Curvature

Lay the push rod on a surface plate.

Roll the push rod along the surface plate and measure the push rod curvature with a thickness gauge. If the measured value exceeds the specified limit, the push rod must be replaced.

Push Rod Curvature

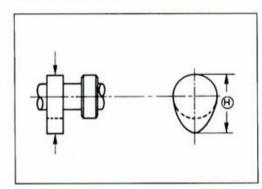
mm (in)

Standard	
0.3 (0.012)	

Visually inspect both ends of the push rod for excessive wear and damage. The push rod must be replaced if these conditions are discovered during inspection.

CAMSHAFT

Visually inspect the journals, the cams, the oil pump drive gear, and the camshaft bearings for excessive wear and damage. The camshaft and the camshaft bearings must be replaced if these conditions are discovered during inspection.


Camshaft Journal Diameter

Use a micrometer to measure each camshaft journal diameter in two directions (1) and 2). If the measured value is less than the specified limit, the camshaft must be replaced.

Charles and the contract of th		
Camshaft	lournal	Diameter
Callistiali	Julinai	Diameter

mm (in)

Standard	Limit
47.94 - 47.97 (1.88 - 1.89)	47.6 (1.87)

Cam Height

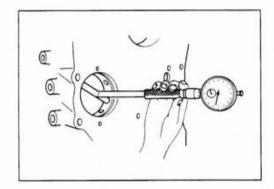
Measure the cam height (H) with a micrometer. If the measured value is less than the specified limit, the camshaft must replaced.

^	11-1-		/ I I
l am	HOIG	nt.	(-
Cam	HOIM		1111

mm (in)

Standard	Limit
40.57 (1.60)	40.2 (1.58)

Camshaft Run-Out


- 1. Mount the camshaft on V-blocks
- Measure the run-out with a dial indicator.

If the measured value exceeds the specified limit, the camshaft must be replaced.

Camshaft Run-Out

mm (in)

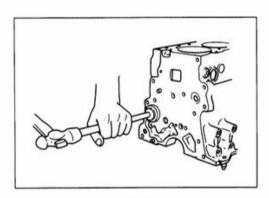
Standard	Limit
0.05 (0.002)	0.10 (0.004)

Camshaft and Camshaft Bearing Clearance

Use an inside dial indicator to measure the camshaft bearing inside diameter.

Camshaft Bearing Inside Diameter

mm (in)


Standard	Limit
48.0 - 48.03 (1.8897 - 1.8909)	48.08 (1.8929)

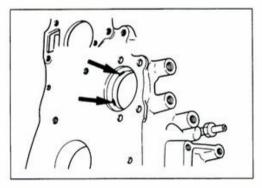
If the clearance between the camshaft bearing inside diameter and the journal exceeds the specified limit, the camshaft bearing must be replaced.

Camshaft Bearing Clearance

mm (in)

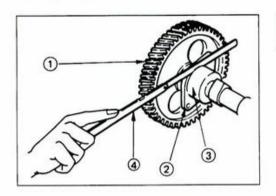
Standard	Limit
0.05 (0.002)	0.12 (0.005)

Camshaft Bearing Replacement


Camshaft Bearing Removal

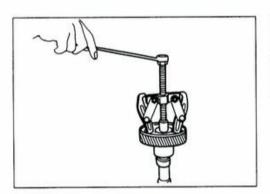
Use the bearing remover to remove the camshaft bearing.

Bearing Remover: 9-8523-1360-0



Camshaft Bearing Installation

- Align the bearing oil holes with the cylinder body of holes.
- 2. Use the installer to install the camshaft bearing.



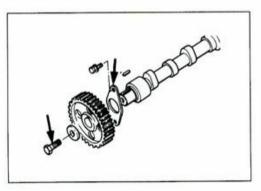
Camshaft End Play

- Before removing the camshaft gear ①, push the thrust plate ② as far as it will go toward the camshaft gear ③.
- Use a feeler gauge 4 to measure the clearance between the thrust plate and the camshaft journal.
 If the measured value exceeds the specified limit, the thrust plate must be replaced.

mm (in)

Standard	Limit
0.050 - 0.114 (0.002 - 0.0044)	0.2 (0.008)

Thrust Plate Replacement (Timing Gear Drive)


Thrust Plate Removal

 Use the universal puller to remove the camshaft gear.

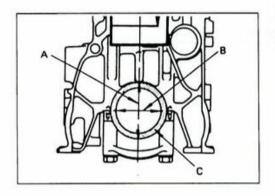
Universal Puller: 5-8521-0002-0

2. Remove the thrust plate.

Thrust Plate Installation

1. Install the thrust plate.

- 2. Apply engine oil to the bolt and threads.
- 3. Install the camshaft gear.



kg·m (lb.ft/N·m)

10.0 - 12.0 (72.3 - 86.7/98.1 - 117.7)

CRANKSHAFT AND BEARING

The C240 engine's crankshaft can be repaired by regrinding and the use of undersize main bearings and the connecting rod bearings.

Summarization of the Basic Dimension Measurement Steps

Main Bearing Inside Diameter = A
Crankshaft Journal Diameter = B
Crankshaft Journal-to-Main Bearing Clearance = C

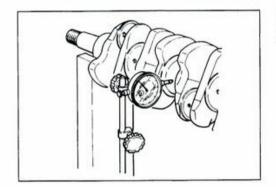
A - B = C

To obtain C, A and B is measured.

Also measure the crankpin-to-connecting rod bearing clearance (C') in similar way.

The clearances C or C' are a base to determine a way of repair.

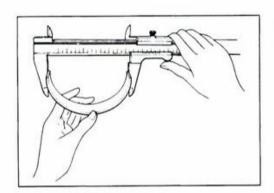
Further the descriptions cover the way of repair as summarized below.


- Replace the bearings with of standard sized ones when the crankshaft journal wear amount and/or crankpin wear amount is within an allowable extent but the bearing wear amount is close to the specified limit.
- Regrind the crankshaft journal surfaces and/or crankpin surfaces and, replace the bearings with of undersized ones when the crankshaft journal wear and crankpin wear are exceeding the specified limit.

Crankshaft and Bearings Inspection

- Inspect the crankshaft journal surfaces and the crankpin surfaces for excessive wear and damage.
- Inspect the oil seal fitting surfaces of the crankshaft front and rear ends for excessive wear and damage.
- Replace or repair the crankshaft if any excessive wear or damage is discovered.
- 4. Inspect the crankshaft oil ports for obstructions.
- Use high pressure air to clean the oil ports is necessary.

Crankshaft Run-Out


- Set a dial indicator to the center of the crankshaft journal.
- Gently turn the crankshaft in the normal direction of rotation.

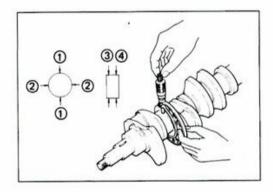
Read the dial indicator as you turn the crankshaft. If the measured value exceeds the specified limit, the crankshaft must be replaced.

Crankshaft Run-Out

mm (in)

Standard	Limit
0.03 (0.012) or less	0.06 (0.0024)

Bearing Spread


Use a vernier caliper to measure the bearing spread.

If the measured value is less than the specified limit, the bearing must be replaced.

-		-	
Re	arın	a Sr	read
	ailii	4 01	noud

mm (in)

bearing opicus	
Crankshaft	Limit
Bearing	74.5 (2.94)
Connecting Rod Bearing	56.5 (2.22)

Crankshaft Journal and Crankpin Diameter

- Use a micrometer to measure the crankshaft journal diameter across points 1 - 1 and 2 - 2.
- Use the micrometer to measure the crankshaft journal diameter at the two points (3 and 4).
- Repeat Steps 1 and 2 to measure the crankpin diameter.

If the measured values are less than the limit, the crankshaft must be replaced.

Crankshaft Journal Diameter

mm (in)

Standard	Limit
69.920 - 69.932	69.420 (2.735)
(2.7548 - 2.7553)	03.420 (2.733)

Crankshaft Diameter

mm (in)


Standard	Limit
52.9188 - 52.930 (2.0849 - 2.0854)	52.418 (2.065)

Crankshaft Journal and Crankpin

Uneven Wear

mm (in)

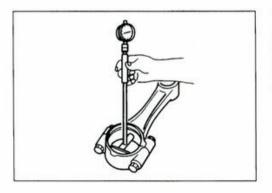
Standard	Limit
0.001 (0.00004)	0.05 (0.002)

Crankshaft Journal and Bearing Clearance

If the clearance between the measured bearing inside diameter and the crankshaft journal diameter exceeds the specified limit, the bearing and/or the crankshaft must be replaced.

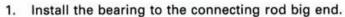
Crankshaft Journal Bearing Clearance

mm (in)


Standard	Limit
0.018 - 0.065 (0.0007 - 0.0025)	0.12 (0.0047)

Crankshaft Bearing Cap Bolt

Torque


kg·m (lb.ft/N·m)

16.0 - 18.0 (117.0 - 128.4/156.9 - 176.5)

Connecting Rod Bearing Inside Diameter

2. Tighten the bearing cap to the specified torque.

Connecting Rod Bearing Cap Bolt

Torque

kg·m (lb.ft/N·m)

8.0 - 9.0 (57.8 - 65.0/78.4 - 88.2)

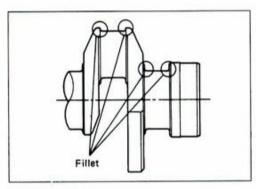
Use an inside dial indicator to measure the connecting rod bearing inside diameter.

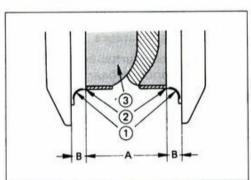
Crankpin and Bearing Clearance

If the clearance between the measured bearing inside diameter and the crankpin exceeds the specified lim the bearing and/or the crankshaft must be replaced.

Crankpin	and	Bearing	Clearance
----------	-----	---------	-----------

mm (i


Standard	Limit
0.018 - 0.065 (0.0007 - 0.0025)	0.12 (0.0047)


Crankshaft Regrinding

To ensure crankshaft reliability, pay close attention the following items during and after the crankshaft r grinding procedure.

mm (i

Undersize Bearing	0.25 (0.010)	0.50 (0.020)
Availability	All the contract of the car.	SASSET MESSELE VIII.

Crankshaft Regrinding Procedure

 Regrind the crankshaft journal and the crankpin observing the following Note.

Note:

In the regrinding procedure, never grind down the fill curved surfaces ① shown in the illustration.

If once the original fillet surfaces, whose a wo hardening have been made in the manufacturin process, are removed out, the crankshaft fillets will I weakened resulting a lowered crankshaft durability.

- Grind the zone "A" (hatched part in the illustratio only keeping the fillet curves "B" in order to secu the work hardened surfaces ①.
- Remove the steps ② after regrinding the shaft blending the surfaces "A" and fillet curves "B" smooth as you can.

Width of Work Hardened Surfaces "B"

mm (i

$$4.0 - 4.5 (0.15 - 0.17)$$

 Finish the crankshaft journal, crankpin, and oil po corners to a smooth surface having a chamfer radio of 1 mm (0.04 in).

Crankshaft Journal and	0.4 μ or less
Crankpin Roughness	

Measure the crankshaft journal and crankpin cleatance.

Refer to "Crankshaft Journal Clearance" and "Crar pin and Clearance" on Page 82.

6. Measure the crankshaft run-out.

Crankshaft Grinding Tolerance

mm (in)

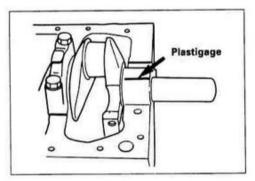
Undersize Bearings	Crank Journal Diameter
0.25	69.670 - 69.682
(0.010)	(2.7450 - 2.7455)
0.50	69.420 - 69.432
(0.020)	(2.7351 - 2.7356)

mm (in)

Undersize Bearings	Crankpin Diameter
0.25	52.668 - 52.680
(0.010)	(20.751 - 2.0756)
0.50	52.418 - 52.430
(0.020)	(2.0653 - 2.0657)

Undersize bearings 0.25 mm (0.010 in) and 0.50 mm (0.020 in) are available to compensate for excessive clearance between the crankshaft journal bearing and the crankshaft. Regrinding of the crankshaft to fit the undersize bearings is required.

Crankshaft Journal and Bearing Clearance

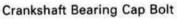

mm (in)

Standard	Limit
0.018 - 0.065 (0.0007 - 0.0025)	0.12 (0.0047)

Crankpin and Bearing Clearance

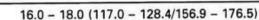
mm (in)

Standard	Limit
0.018 - 0.065 (0.0007 - 0.0025)	0.12 (0.0047)


雪

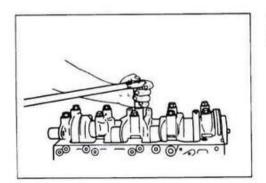
Q

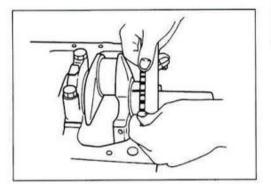
Clearance Measurement (With Plastigage)


Crankshaft Journal and Bearing Clearance

- Clean the cylinder body, the journal bearing fitting surface, the bearing caps, and the bearings.
- 2. Install the bearings to the cylinder body.
- Carefully place the crankshaft on the bearings.
- Rotate the crankshaft approximately 30° to seat the bearing.
- Place the Plastigage (arrow) over the crankshaft journal across the full width of the bearing.
- Install the bearing caps with the bearing.
- Tighten the bearing caps to the specified torque.

Torque


kg·m (lb.ft/N·m)



Do not allow the crankshaft to turn during bearing

Do not allow the crankshaft to turn during bearing cap installation and tightening.

8. Remove the bearing cap.

Compare the width of the Plastigage attached to either the crankshaft or the bearing against the scale printed on the Plastigage container.

If the measured value exceeds the limit, perform the following additional steps.

- Use a micrometer to measure the crankshaft outside diameter.
- Use an inside dial indicator to measure the bearing inside diameter.

If the crankshaft journal and bearing clearance exceeds the limit, the crankshaft and/or the bearing must be replaced.

Crankshaft Journal and Bearing Clearance

mm (in)

Limit
0.12 (0.0047)

Crankpin and Bearing Clearance

- Clean the crankshaft, the connecting rod, the bearing cap, and the bearings.
- 2. Install the bearing to the connecting rod and the bearing cap.

Do not allow the crankshaft to move when installing the bearing cap.

- Prevent the connecting rod from moving.
- Attach the Plastigage to the crankpin.

Apply engine oil to the Plastigage to keep it from falling.

Install the bearing cap and tighten it to the specified torque.

Do not allow the connecting rod to move when installing and tightening the bearing cap.

Connecting Rod Bearing Cap Bolt

Torque

kg·m (lb.ft/N·m)

8.0 - 9.0 (57.8 - 65.0/78.4 - 88.0)

6. Remove the bearing cap.

 Compare the width of the Plastigage attached to either the crankshaft or the bearing against the scale printed on the Plastigage container.

If the measured value exceeds the specified limit, perform the following additional steps.

- Use a micrometer to measure the crankpin outside diameter.
- Use an inside dial indicator to measure the bearing inside diameter.

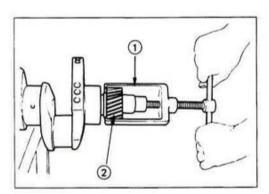
If the crank pin and bearing clearance exceeds the specified limit, the crankshaft and/or the bearing must be replaced.

Crankpin and Bearing Clearance

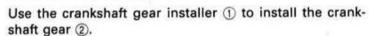
mm (in)

Standard	Limit
0.018 - 0.065 (0.0007 - 0.0025)	0.12 (0.0047)

Crankshaft Gear Replacement (Timing Gear Drive)

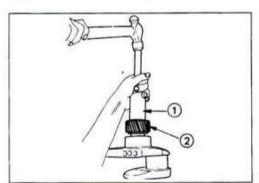

Crankshaft Gear Removal

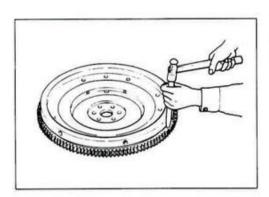
 Use the crankshaft gear remover ① to remove the crankshaft gear ②.



2. Remove the crankshaft feather key.

Crankshaft Gear Installation





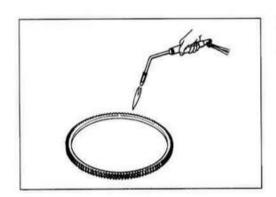
The crankshaft gear timing mark ("X - X") must be facing

Crankshaft Gear Installer: 9-8522-0021-0 (J-26587)

FLYWHEEL AND RING GEAR

Ring Gear Replacement

Ring Gear

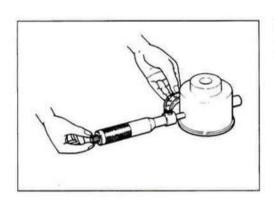


Inspect the ring gear.

If the ring gear teeth are broken or excessively worn, the ring gear must be replaced.

Ring Gear Removal

Strike around the edges of the ring gear with a hammer and chisel to remove it.



Ring Gear Installation

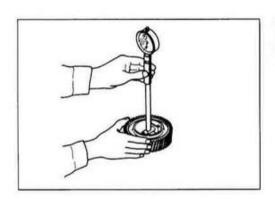
- Heat the ring gear evenly with a gas burner to invite thermal expansion.
 - Do not allow the temperature of the gas burner to exceed 200°C (390°F).
- Install the ring gear when it is sufficiently heated.The ring gear must be installed with the chamfer facing the clutch.

Note:

Another method of heating the ring gear to invite thermal expansion is to soak a rag in diesel fuel, wrap the diesel fuel soaked rag around the rim of the ring gear, and then light the rag.

IDLER GEAR SHAFT AND IDLER GEAR

Idler Gear Shaft Outside Diameter


Use a micrometer to measure the idler gear shaft outside diameter.

If the measured value is less than the specified limit, the idler gear must be replaced.

Idler Gear Shaft Outside Diameter

mm (in)

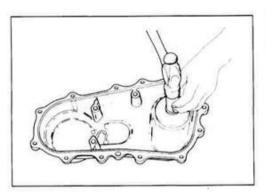
Standard	Limit
44.95 - 44.98	44.90 (1.767)
1.769 - 1.770)	

Idler Gear Inside Diameter

 Use an inside dial indicator or an inside micrometer to measure the idler gear inside diameter.

Idler Gear Inside Diameter

mm (in)


Standard	Limit
45.0 - 45.03 (1.7717 - 1.7718)	45.10 (1.7756)

If the clearance between the idler gear shaft outside diameter and the idler gear inside diameter exceeds the limit, the idler gear must be replaced.

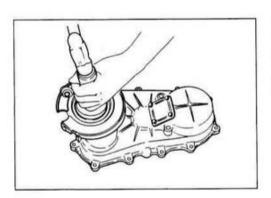
Idler Gear Shaft and Idler Gear Clearance

mm (in)

Standard	Limit
0.025 - 0.085	0.2 (0.008)
(0.0010 - 0.0033)	0.2 (0.008)

TIMING GEAR CASE COVER

Replace the crankshaft front oil seal if it is excessively worn or damaged.


Crankshaft Front Oil Seal Replacement

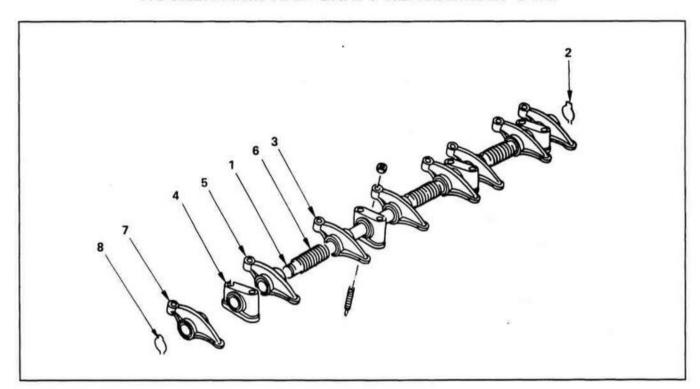
Oil Seal Removal

Use a plastic hammer and a screwdriver to tap around the oil seal to free it from the gear case.

Take care not to damage the oil seal fitting surfaces.

Oil Seal Installation

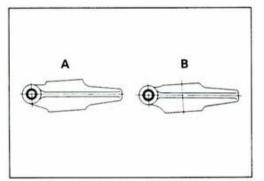
Oil Seal Installer: 5-8522-0013-0 (J-2658-7013)

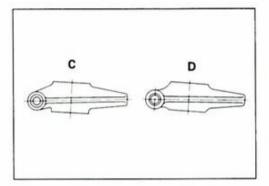

SECTION 5

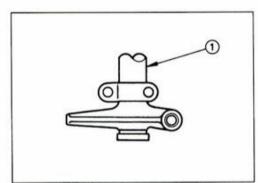
ENGINE ASSEMBLY (3) (REASSEMBLY)

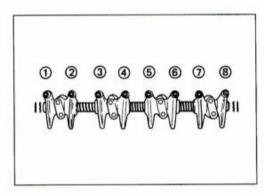
TABLE OF CONTENTS

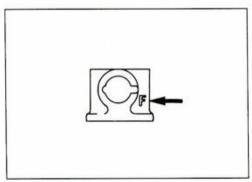
ITEM PA	\GE
Rocker arm and shaft reassembly step	. 90
Cylinder head reassembly step	. 92
Piston and connecting rod reassembly step	. 94
Camshaft reassembly step	. 97
Reassembly 1st step	. 98
Reassembly 2nd step	. 107
Reassembly 3rd step	. 113
Engine tuning operation	. 119


ROCKER ARM AND SHAFT REASSEMBLY STEP






Reassembly Steps


- ▲ 1. Rocker arm shaft
 - 2. Rocker arm shaft snap ring
- ▲ 3. Rocker arm "C"
- ▲ 4. Rocker arm shaft bracket
- 5. Rocker arm "D"
- 6. Rocker arm shaft spring
- 7. Rocker arm "A"
- 8. Rocker arm shaft snap ring

Important Operations

- ▲ Rocker Arm shaft
- ▲ Rocker Arm "A", "B", "C", "D"

- Use compressed air to thoroughly clean the rocker arm shaft and the rocker arm oil holes.
- Apply a coat of engine oil to the rocker arm shaft and the rocker arm bushings.

The rocker arm shaft positioning is done by a cutaway machined on the shaft end. Therefore, install the bracket and the shaft so that the cutaway facing the mating bolt stem.

(1) = Cutaway on the rocker arm shaft end

Note

Rocker arms "A", "B", "C" and "D" each have a different shape. Be sure to install them in their correct position.

Rocker arm "A"

Rocker arm "B"

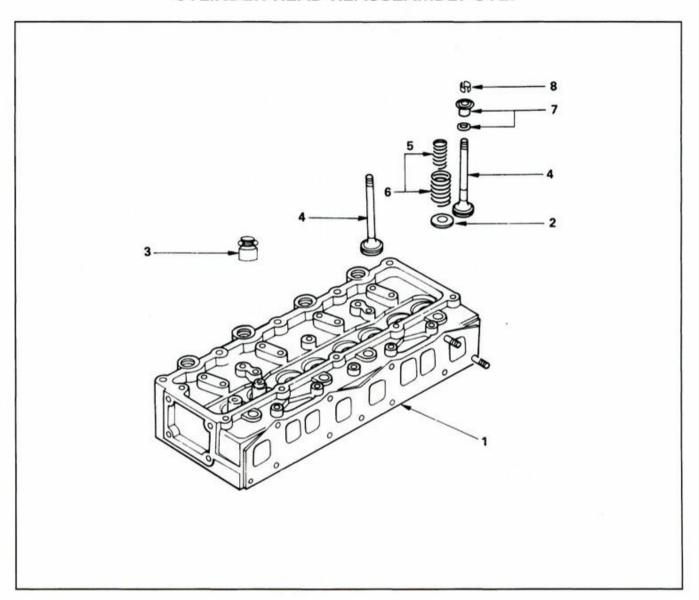
Rocker arm "C"

Rocker arm "D"

Rocker Arm Fitting Positions (From the Front)

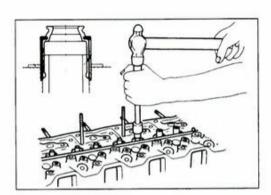
Rocker arm "A" : ① Rocker arm "B" : ®

Rocker arm "C": 3, 5, and 7


Rocker arm "D" : 2, 4, and 6

▲ Rocker Arm Shaft Bracket

Install the rocker arm shaft brackets with the "F" marked side turned to the front of the engine.

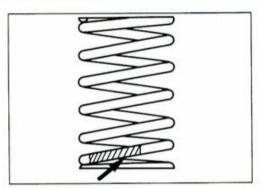

CYLINDER HEAD REASSEAMBLY STEP

Reassembly Steps

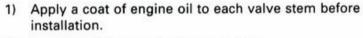
- 1.. Cylinder head
- 2. Valve spring lower seat
- ▲ 3. Valve guide oil seal
- ▲ 4. Intake and exhaust valve
- 5. Valve spring (Inner)
- ▲ 6. Valve spring (Outer)
 - 7. Valve spring upper seat
- ▲ 8. Split collar

Important Operations

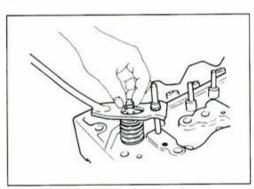
▲ Valve Guide Oil Seal



Apply a coat of engine oil to the oil seal inner face. 1)


Use an oil seal installer to install the oil seal to the 2) valve guide.

Oil Seal Installer


▲ Intake and Exhaust Valves

- Install the intake and exhaust valves.
- Turn the cylinder head up to install the valve springs.

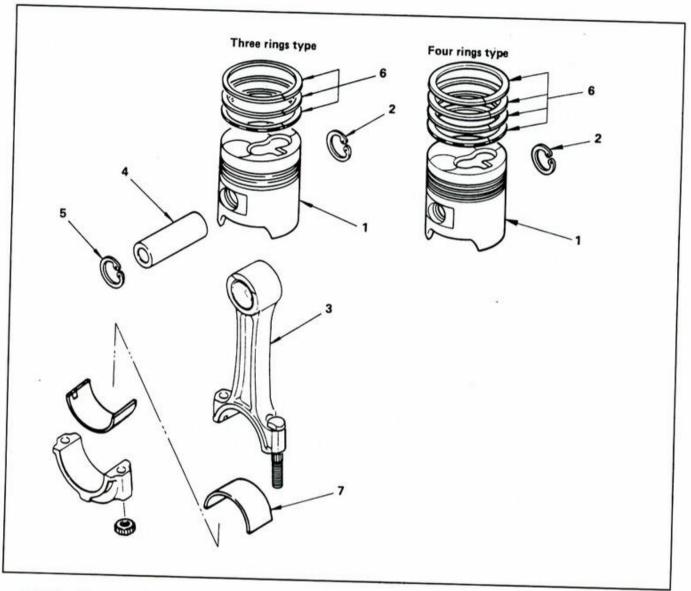
Take care not to allow the installed valves to fall

▲ Valve Spring (Inner)

▲ Valve Spring (Outer)

Install the inner and outer valve springs with their fine pitched end (painted) facing down.

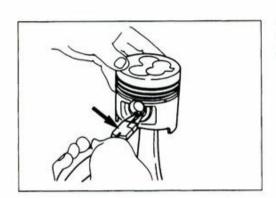
▲ Split Collar


Use the spring compressor to push the valve spring into position.

Spring Compressor: 9-8523-1423-0 (J-29760)

- Install the split collar to the valve stem.
- Set the split collar by tapping around the head of the collar with a rubber hammer.

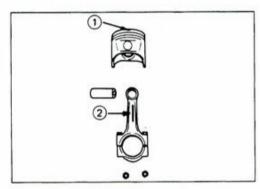
PISTON AND CONNECTING ROD REASSEMBLY STEP



Reassembly Steps

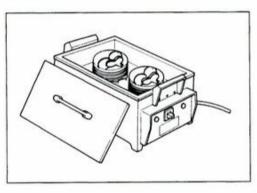
- ▲ 1. Piston
- ▲ 2. Piston pin snap ring
- ▲ 3. Connecting rod
- ▲ 4. Piston pin

- 5. Piston pin snap ring
- ▲ 6. Piston ring
- ▲ 7. Connecting rod bearing


Important Operations

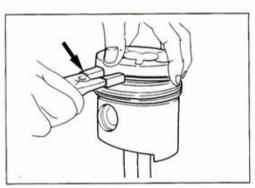
▲ Piston

▲ Piston Pin Snap Ring


▲ Connecting Rod

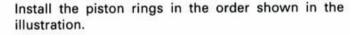
- 1) Clamp the connecting rod in a vise. Take care not to damage the connecting rod.
- 2) Use a pair of snap ring pliers to install the piston pin snap ring to the piston.

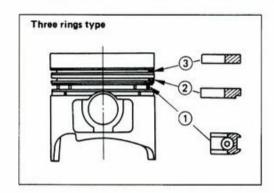
Install the piston to the connecting rod so that the piston head front mark 1) and the connecting rod "ISUZU" forging mark (2) are facing in the same direction.

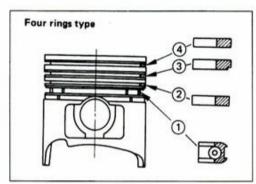


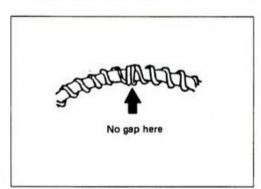
▲ Piston Pin

- Use a piston heater to heat the piston to approximately 80°C (176°F).
- Apply a coat of engine oil to the piston pin. 2)


- Use your fingers to force the piston pin into the 3) piston until it makes contact with the snap ring.
- Use a pair of snap ring pliers to install the other 4) snap ring.
- Check that the connecting rod moves smoothly on the piston pin.



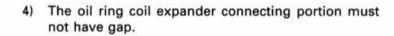

▲ Piston Ring

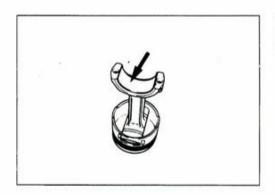

1) Use a piston ring replacer to install the piston rings. Piston Ring Replacer

Three Rings Type	Four Rings Type
① Oil ring	① Oil ring
② 1st compression ring	② 1st compression ring
3 2nd compression ring	3 2nd compression ring
	4 3rd compression ring

Note:

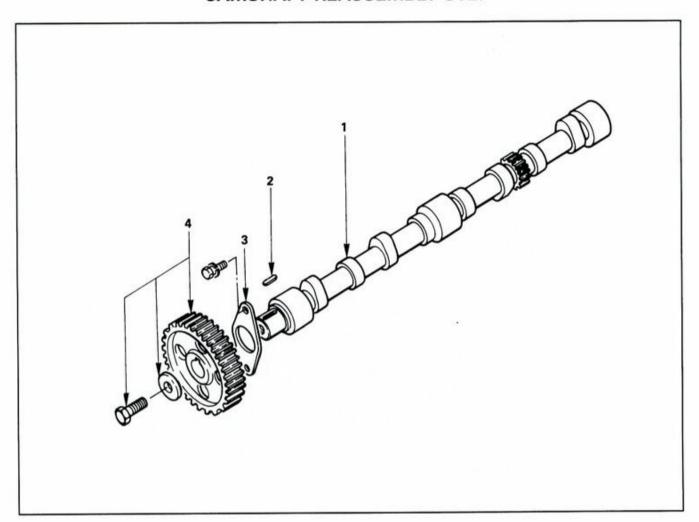
Install the compression rings with the stamped side facing up.


Insert the expander coil into the oil ring groove so that there is no gap on either side of the expander coil before installing the oil ring.



2) Apply engine oil to the piston ring surfaces.

Check that the piston rings slide smoothly in the piston ring grooves.



▲ Connecting Rod Bearing

Carefully wipe any oil or other foreign material from the connecting rod bearing back face and the connecting rod bearing fitting surface.

CAMSHAFT REASSEMBLY STEP

Reassembly Steps

- 1. Camshaft
- 2. Feather key

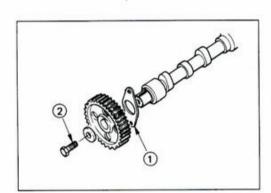
- 3. Thrust plate
- Camshaft timing gear

Important Operations

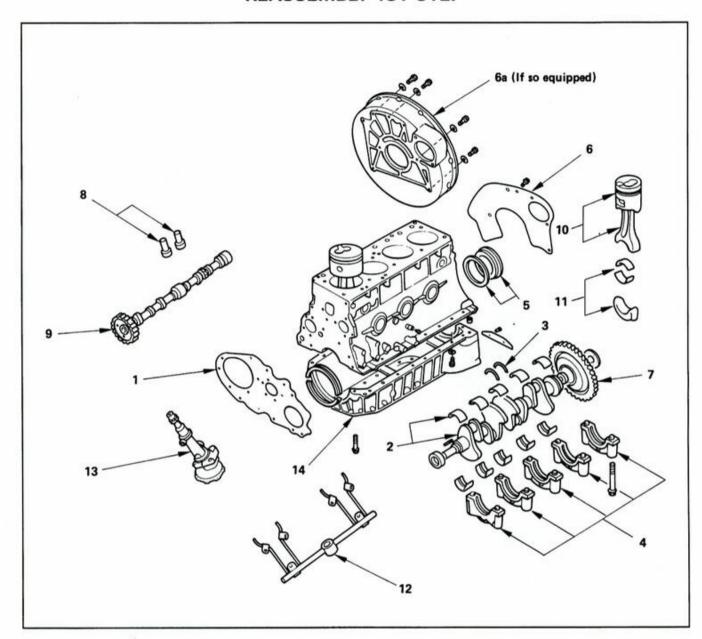
▲ Camshaft Timing Gear

1) Install the thrust plate 1.

2) Apply engine oil to the bolt threads ②.



3) Install the camshaft timing gear with the timing mark stamped side facing out.



Camshaft Timing Gear Bolt Torque kg·m (lb.ft/N·m)

10.0 - 12.0 (72.3 - 86.7/98.1 - 117.7)

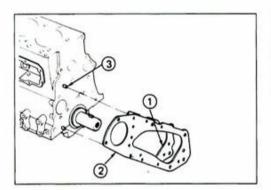
REASSEMBLY 1ST STEP

Reassembly Steps

- ▲ 1. Front plate
- Crankshaft and bearing upper halves
- ▲ 3. Thrust bearing
- 4. Main bearing cap and bearing lower halves
- ▲ 5. Oil seal
- ▲ 6. Rear plate
- ▲ 6a Flywheel housing (If so equipped)
- ▲ 7. Flywheel
- ▲ 8. Tappet

- ▲ 9. Camshaft
- ▲ 10. Piston and connecting rod with bearing upper halves

(Inverted engine)


- ▲ 11. Connecting rod bearing cap with bearing lower halves
- ▲ 12. Oiling jet
- ▲ 13. Oil pump
- ▲ 14. Crankcase

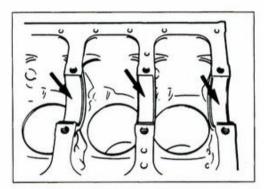
Important Operations

Note

Use compressed air to thoroughly clean the cylinder body interior and exterior, the oil holes and the water jackets before the reassembly.

▲ Front Plate

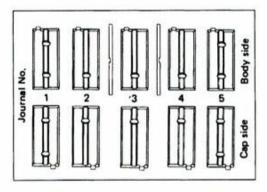
 Install the front plate gasket ① to the cylinder body side.

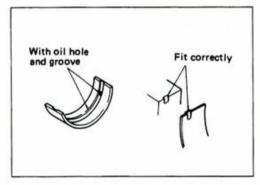


- Align the cylinder body front plate ② with the cylinder body straight pins ③.
- Tighten the cylinder body front plate to the specified torque.

Front Plate Bolt Torque

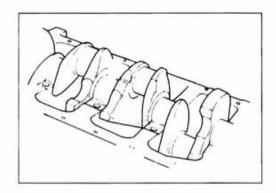
kg·m (lb.ft/N·m)


1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)



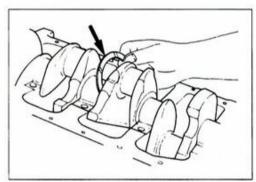
▲ Crankshaft and Bearing Upper Halves

- Carefully wipe any foreign material from the upper bearing.
- Locate the position mark applied at disassembly if the removed upper bearings are to be reused.



The illustration shows correct bearing location at the cylinder body bearing fitting arches and the bearing caps.

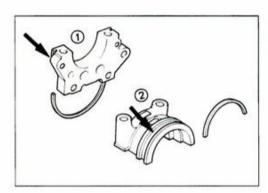
Fit the bearing tang firmly into the slot machined on the cylinder body bearing arches.



Apply an ample coat of engine oil to the crankshaft journals and the crankshaft bearing surfaces before installing the crankshaft.

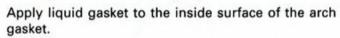
Note:

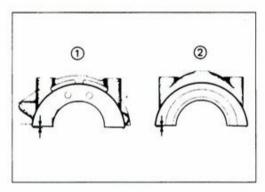
Do not apply engine oil to the bearing back faces and the cylinder body bearing fitting surfaces.


▲ Thrust Bearing

Apply an ample coat of engine oil to the thrust bearings before installation.

Install the thrust bearings to the crankshaft center journal.

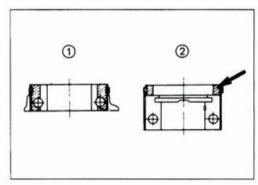



▲ Main Bearing Cap and Lower Bearing Halves

 Install an arch gasket to both the No. 1 ① and the No. 5 ② crankshaft bearing caps.

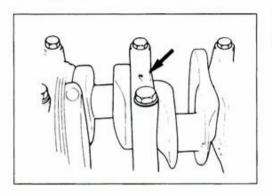
Use your fingers to push the arch gasket into the bearing cap groove.

Take care not to scratch the outer surface of the arch gasket.


2) Check the arch gasket projection.

Arch Gasket Projection

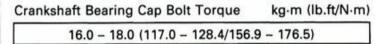
mm (in)

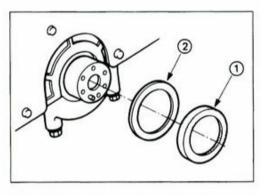

0 - 0.005 (0 - 0.002)

Check that the arch gaskets are making firm contact with the cylinder body side.

 Apply a coat of silicon adhesive to the cylinder body fitting surfaces of the No. 1 ① and the No. 5 ② crankshaft bearing caps.

 Install the bearing caps with the bearing cap head arrow mark facing forward.


The bearing cap with the stamped "A" mark on the bearing cap head must be installed to the No. 2 position.



5) Apply a coat of engine oil to the bearing cap bolts.

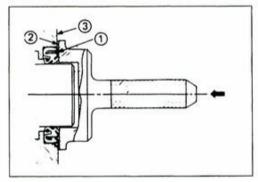
6) Tighten the bearing cap bolts to the specified torque a little at a time in the sequence shown in the illustration.

 Check to see that the crankshaft turns smoothly by rotating it manually.

▲ Crankshaft Rear Oil Seal and Spacer

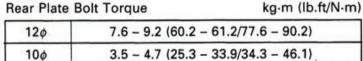
- Apply engine oil to the oil seal lip circumference and the oil seal outer circumference.
- Apply silicon adhesive to the oil seal ① outer circumference.
- 3) Set the spacer ② to the oil seal.

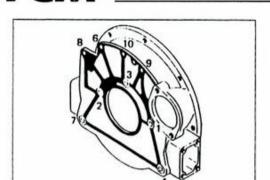
If the oil seal surface at the crankshaft rear end has been excessively grooved due to wear, remove the spacer.


This will renew the oil seal surface at place.

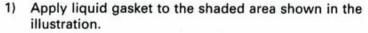
4) Use the oil seal installer to install the oil seal to the cylinder body ③.

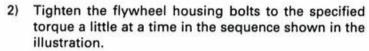
There must be no gap between the spacer and the oil seal.


Oil Seal Installer: 9-8522-1279-0 (J-22928)

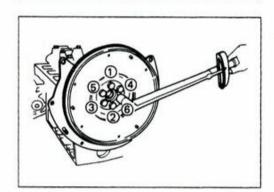


▲ Rear Plate

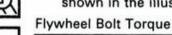

- Align the rear plate with the cylinder body knock pins.
- 2) Tighten the rear plate bolt to the specified torque.

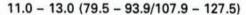


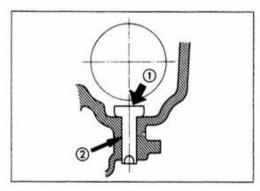
▲ Flywheel Housing (If so equipped)



kg·m (lb.ft/N·m)

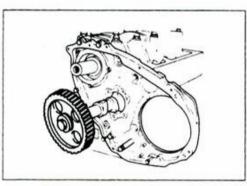

12φ	7.6 - 9.2 (60.2 - 61.2/77.6 - 90.2)
10φ	3.5 - 4.7 (25.3 - 33.9/34.3 - 46.1)




▲ Flywheel

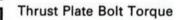
- Apply a coat of engine oil to the threads of the flywheel bolts.
- 2) Align the flywheel with the crankshaft dowel pin.
- Tighten the flywheel bolts in the numerical order shown in the illustration.

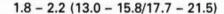
kg·m (lb.ft/N·m)



▲ Tappet

- Apply a coat of engine oil to the tappet ① and the cylinder body tappet travelling bore ②.
- Locate the position mark applied at disassembly (if the tappet is to be reused).


The tappet must be installed before the camshaft installation.

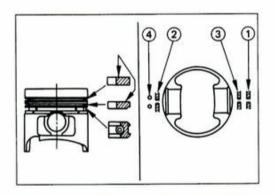

▲ Camshaft

- Apply a coat of engine oil to the camshaft and the camshaft bearings.
- Install the camshaft to the cylinder body.
 Take care not to damage the camshaft bearings.
- 3) Tighten the thrust plate bolt to the specified torque.

kg·m (lb.ft/N·m)

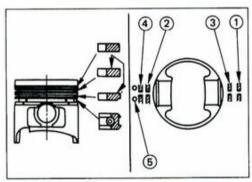
 Check to see that the camshaft turns smoothly by rotating it manually.

- ▲ Piston and Connecting Rod with Bearing Upper Halves
- ▲ Connecting Rod Bearing Cap with Bearing Lower Halves

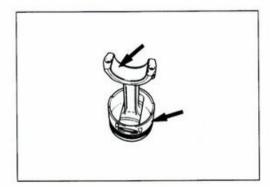


- Apply a coat of engine oil to the circumference of each piston ring and piston.
- Position the piston ring gaps as shown in the illustration respectively.

Note:



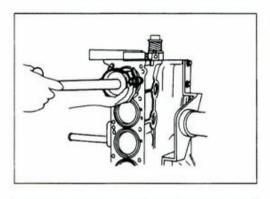
The piston ring gaps must not be placed at the lateral pressure side of the piston, but place them at the piston pin end side having no lateral pressure application.


For Three Rings Type Piston

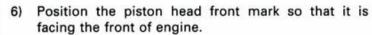
- 1) 1st Compression Ring's Ring Gap
- 2 2nd Compression Ring's Ring Gap
- 3 Oil Ring's Ring Gap
- 4 Coil Expander Jointing End

For Four Rings Type Piston

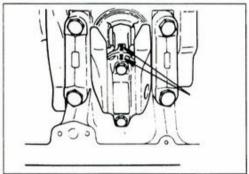
- 1) 1st Compression Ring's Ring Gap
- 2 2nd Compression Ring's Ring Gap
- 3 3rd Compression Ring's Ring Gap
- 4 Oil Ring's Ring Gap
- (5) Coil Expander Jointing End



Apply a coat of molybdenum disulfide grease to the two piston skirts.

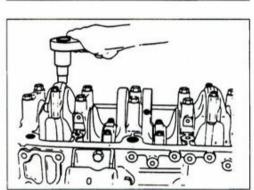

This will facilitate smooth break-in when the engine is first started after reassembly.

- Apply a coat of engine oil to the upper bearing surfaces.
- 5) Apply a coat of engine oil to the cylinder bore.

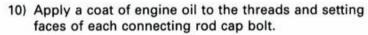


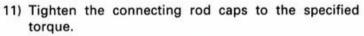
Use a piston ring compressor to compress the piston rings.

Piston Ring Compressor: 5-8840-9018-0

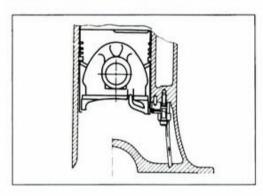

Use a hammer grip to push the piston in until the connecting rod makes contact with the crankpin.

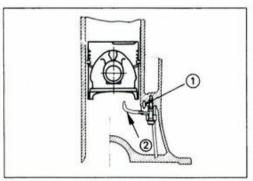
At the same time, rotate the crankshaft until the crankpin is at BDC.





9) Align the bearing cap cylinder number marks and the connecting rod cylinder number marks.





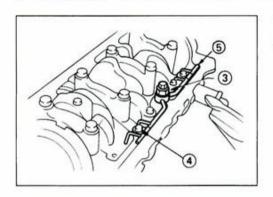
Torque

kg·m (lb.ft/N·m)

8.0 - 9.0 (57.8 - 65.0/78.4 - 88.2)

▲ Oiling Jet

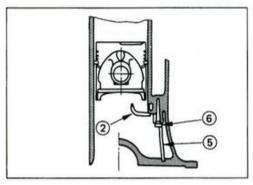
The oiling jet injects oil into the piston cooling channel when the piston is at BDC. This provides maximum cooling efficiency.


The oiling jet must be carefully installed in the specified position to prevent its being damaged by the piston.

The oiling jet uses thin steel tubing which is easily bent. Accidental contact between the oiling jet and the cylinder body, piston, or a tool will damage the oiling jet.

Never attempt to repair a damaged oiling jet. Replace it with a new one.

- 1) Move the piston to TDC.
- Align the oiling jet knock pin hole with the cylinder body knock pin 1.
- 3) Install the oiling jet 2.



- 4) Use the relief valve ③ and the bolt ④ to temporarily tighten the oiling jet pipe ⑤.
- 5) Move the piston to BDC.

Check that the oiling jet tips are properly facing the piston back cavity.

6) Use the inner hexagon wrench to tighten the four joint bolts ® fixing the oiling jet ② and the oiling jet pipe ⑤ to the specified torque.

5mm (0.197 in) Inner Hexagon Wrench

Joint Bolt Torque

kg·m (lb.ft/N·m)

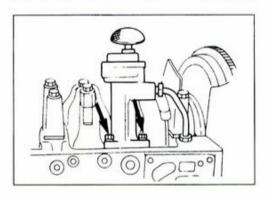
0.6 - 1.0 (4.4 - 7.2/6.0 - 9.6)

7) Tighten the oiling jet pipe relief valve and the oiling jet pipe bolt to the specified torque.

Relief Valve Torque

kg·m (lb.ft/N·m)

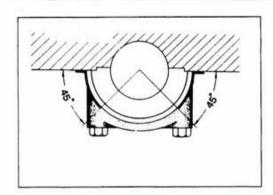
2.5 - 3.5 (18.1 - 25.3/24.5 - 34.3)

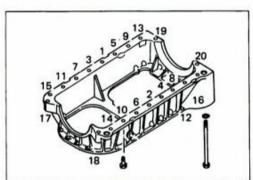

Oiling Jet Pipe Bolt Torque

kg·m (lb.ft/N·m)

1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)

3) Check that there is no interference between the piston and the oiling jet pipe by slowly rotating the crankshaft.


▲ Oil Pump


Install the oil pump and tighten it to the specified torque.

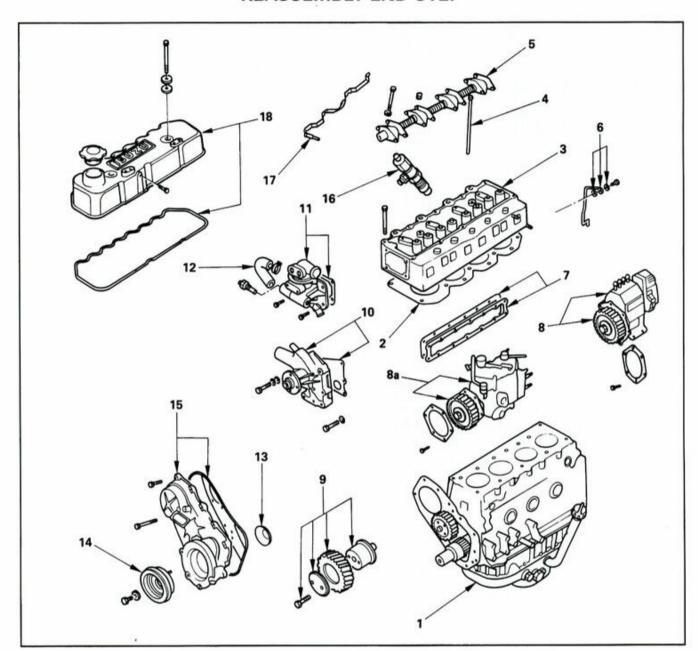
Oil Pump Bolt Torque

kg·m (lb.ft/N·m)

1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)

▲ Crankcase

 Apply a coat of liquid gasket to the cylinder body flange surface and the No. 1 and No. 5 bearing cap arch gaskets at positions shown in the illustration.

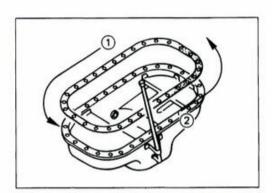

- Install the crankcase with aligning the knock pin and the knock pin hole of the cylinder body.
- 3) Tighten the crankcase bolt to the specified torque a little at a time in numerical order.

Crankcase Bolt Torque

kg·m (lb.ft/N·m)

1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)

REASSEMBLY 2ND STEP



Reassembly Steps

- 1. Oil pan
- ▲ 2. Cylinder head gasket
- ▲ 3. Cylinder head
- 4. Push rod
- ▲ 5. Rocker arm shaft bracket and rocker arm
- ▲ 6. Valve rocker oil feed pipe
- ▲ 7. Tappet chamber cover
- ▲ 8. Injection pump (In-line type)
- ▲ 8a Injection pump (Distributor type) with bracket

- ▲ 9. Idler gear
- ▲ 10. Water pump
- ▲ 11. Thermostat housing
- ▲ 12. Water by-path pipe
- ▲ 13. Crankshaft oil thrower
- ▲ 14. Crankshaft pulley
- ▲ 15. Timing gear case
- ▲ 16. Injection nozzle
- ▲ 17. Glow plug
- ▲ 18. Cylinder head cover

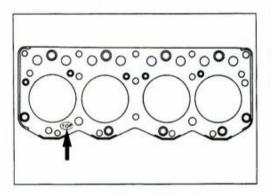
Important Operations

▲ Oil Pan

 Wipe the crankcase oil pan mounting flange surfaces and oil pan flange surfaces before the liquid gasket coating.

 Apply a coat of liquid gasket on the crankcase flange evenly.

3) Affix the oil pan gasket and install the oil pan.

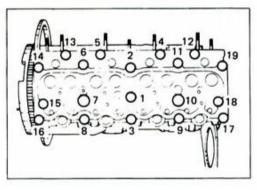


4) Tighten the oil pan bolts to the specified torque starting from ① and ② alternately, as shown in the illustration and, work out toward the arrow directions.

Oil Pan Bolt Torque

kg·m (lb.ft/N·m)

0.6 - 1.0 (4.4 - 7.2/6.0 - 9.6)



▲ Cylinder Head Gasket

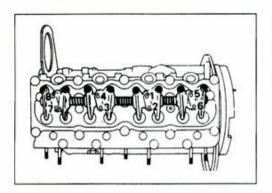
The cylinder gasket "TOP" mark must be facing up.

▲ Cylinder Head

 Align the cylinder body dowels and the cylinder head dowel holes.

Carefully place the cylinder head on the cylinder head gasket.

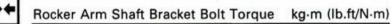
 Lubricate the bolt head setting faces and threads with a coat of engine oil.



 Tighten the cylinder head bolts to the specified torque in two steps and in the numerical orders as illustrated.

Cylinder Head Torque

kg·m (lb.ft/N·m)

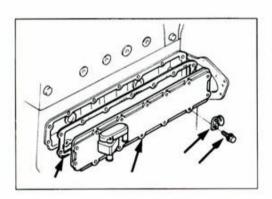

	1st Step	2nd Step
New Bolt	6.0 - 7.0 (45.4-50.6/55.8-68.6)	7.5 - 8.5 (52.1-83.5/64.6-86.2)
Used Bolt	6.0 - 7.0 (45.4-50.6/55.8-68.6)	8.5 - 9.5 (58.5-71.5/79.4-97.0)

▲ Rocker Arm Shaft Bracket and Rocker Arm

Tighten the rocker arm shaft bracket bolts in the numerical order shown in the illustration.

1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)

▲ Valve Rocker Oil Feed Pipe

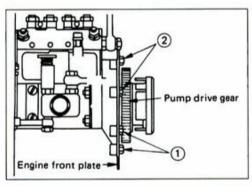

Install the oil pipe and tighten the pipe eye bolt to the specified torque.

Torque

kg·m (lb.ft/N·m)

0.8 - 1.2 (5.8 - 8.6/7.8 - 11.8)

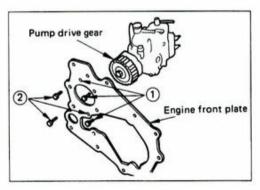
▲ Tappet Chamber Cover


 Affix the tappet chamber cover gasket to the cylinder body and install the cover.

 Tighten the bolts to the specified torque with working up from central bolts to the both end alternately and evenly.

Tappet Chamber Cover Bolt Torque kg·m (lb.ft/N·m)

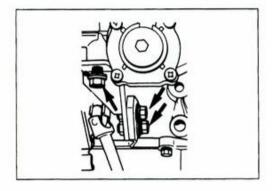
1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)



▲ Injection Pump (In-line type)

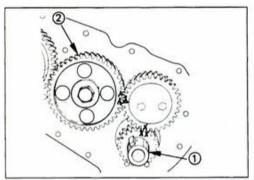
Install the injection pump to the engine front plate with aligning the gear setting mark "Z" with the camshaft gear setting mark "Z-Z" and, tighten the bolts ① and ② to the specified torque.

Injection Pump Fixing Bolt Torque kg·m (lb.ft/N·m)

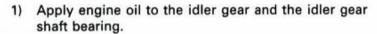

1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)

▲ Injection Pump (Distributor type) with Bracket

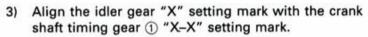
- The installation procedure for the distributor type injection pump is identical with the procedure of the in-line type injection pump.
- Install the injection pump bracket and tighten the bracket bolt to the specified torque evenly.

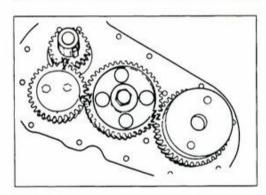


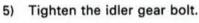
Injection Pump Bracket Bolt Torque (Distributor Type Only)


kg·m (lb.ft/N·m)

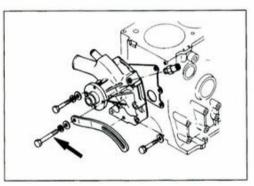
1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)




▲ Idler Gear


Position the idler gear setting marks "X" and "Y" so that they are facing the front of the engine.

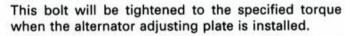
 Align the idler gear "Y" setting mark with the camshaft timing gear @ "Y-Y" setting mark.



Idler Gear Bolt Torque

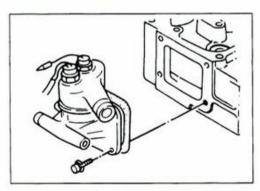
kg·m (lb.ft/N·m)

1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)



▲ Water Pump

 Temporarily tighten the water pump bolt marked with an arrow in the illustration.



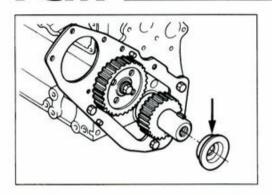
2) Tighten the other water pump bolts to the specified torque.

Water Pump Bolt Torque

kg·m (lb.ft/N·m)

3.5 - 4.7 (25.3 - 33.9/34.3 - 46.1)

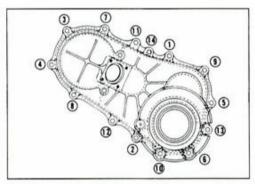
▲ Thermostat Housing



Tighten the thermostat housing bolts to the specified torque.

Thermostat Housing Bolt Torque

kg·m (lb.ft/N·m)


1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)

▲ Crankshaft Oil Thrower

Install the crankshaft oil thrower flange so that it is facing outward.

▲ Timing Gear Case

 Check that the timing gear case gasket is firmly inserted into the gear case groove.

Tighten the timing gear case bolts to the specified torque in the order shown in the illustration.

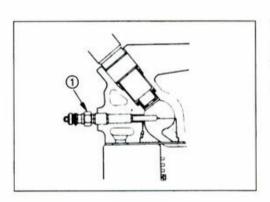
Timing Gear Case Bolt Torque

kg·m (lb.ft/N·m)

1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)

▲ Crankshaft Pulley

Tighten the crankshaft pulley to the specified torque.



Crankshaft Pulley Bolt Torque

kg·m (lb.ft/N·m)

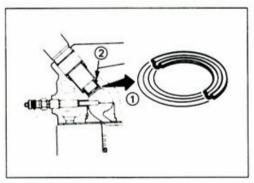
17.0 - 21.0 (122.8 - 151.6/166.7 - 205.9)

Take care not to damage the oil seal lip when the pulley is installed.

▲ Glow Plug

1) Tighten the glow plugs 1) to the specified torque.

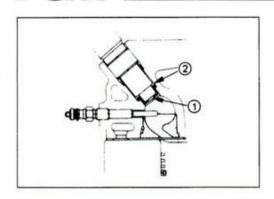
Glow Plug Torque

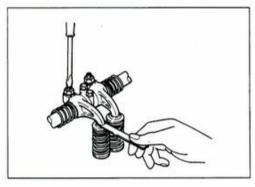

kg·m (lb.ft/N·m)

1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)

Always replace the four glow plugs as a set. Never replace just one glow plug.

2) Install and tighten the connector 2.

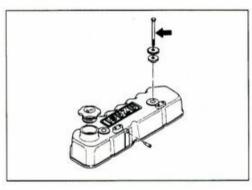




▲ Injection Nozzle Holder

 Install the new <u>corrugated</u> washer ① with the groove facing up.

- 2) Install the new injection nozzle holder washer 2).
- Install the nozzle holder and temporarily tighten it.
 Final tightening will be performed after installation of the injection pipe.



Note on Valve Clearance Adjustment

Valve clearances must be adjusted before the cylinder head cover reinstalled.

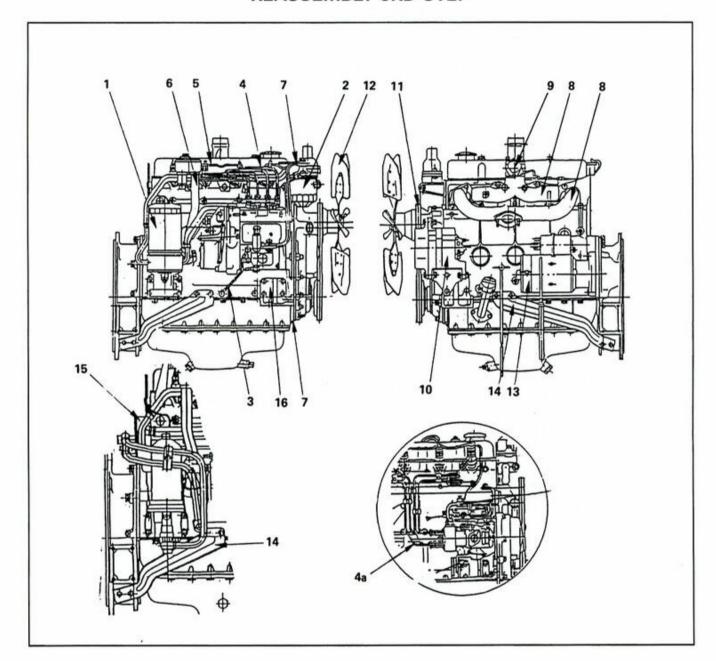
Refer to "Valve Clearance Adjustment" in the "Servicing" Section of this Manual.

▲ Cylinder Head Cover

 Apply engine oil to the rocker arm and the valve spring.

Install the cylinder head cover gasket to the head cover.

Check to see that the head cover gasket has no loose areas.

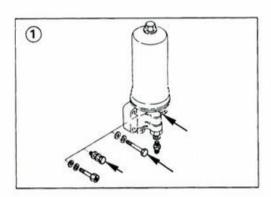

Tighten the cylinder head cover bolts to the specified torque.

Cylinder Head Cover Bolt Torque

kg·m (lb.ft/N·m)

0.8 - 1.8 (5.8 - 13.0/7.8 - 17.6)

REASSEMBLY 3RD STEP



Reassembly Steps

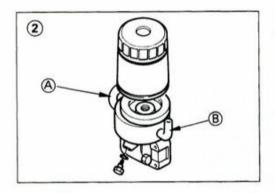
- ▲ 1. Oil filter
 - 2. Fuel filter
 - 3. Injection pump oil pipe
- 4. Injection pipe (In-line type)
- 4a Injection pipe (Distributor type)
- ▲ 5. Leak off pipe
- ▲ 6. Air breather hose
- ▲ 7. Fuel pipe
- ▲ 8. Inlet and exhaust manifold

- ▲ 9. Engine control (If so equipped)
- ▲ 10. Generator
- ▲ 11. Fan pulley and fan belt
- 12. Cooling fan▲ 13. Starter
- - 14. Stiffener (If so equipped)
- ▲ 15. Oil cooler (If so equipped and removed in disassembly)
- ▲ 16. Engine foot

Important Operations

▲ Oil Filter

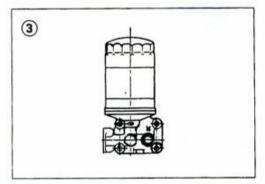
Install the oil filter and tighten the fixing bolts to the specified torque.

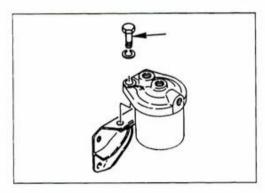

Oil Filter Bolt Torque

kg·m (lb.ft/N·m)

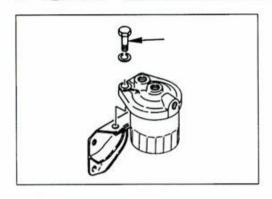
1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)

This specified oil filter mounting bolt torque is identical on the three types of oil filter used in this engine.

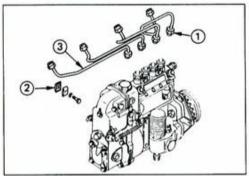

- 1) Replaceable Element Type
- 2 Disposable cartridge Spin-on Type with Built-in Oil Cooler
- ③ Disposable Cartridge Spin-on Type


Coolant Hose for Filter 2 (With Built-in Oil Cooler)

After the oil filter installation, install the coolant hose to the respective connecting pipe (A) and (B).


Refer to page 16 of MAINTENANCE for information.

▲ Fuel Filter (Replaceable Element Type)


- 1) Install the fuel filter to the fuel filter bracket.
- 2) Temporarily tighten the fuel filter bracket bolts. This will facilitate fuel pipe installation.
- 3) Tighten the fuel filter bracket bolts after the fuel pipes have been installed to the fuel filter.

▲ Fuel Filter (Disposable Cartridge Spin-on Type)

Depending on the engine application, a disposable cartridge type fuel filter is used.

The installation procedure for this type of fuel filter is identical with the same of the replaceable element type fuel filter.

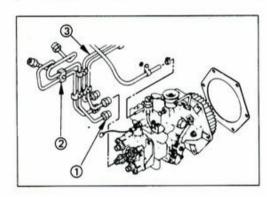
4

▲ Injection Pipe (In-Line Type)

▲ Injection Pipe (Distributor Type)

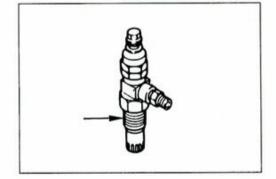
1) Install the fuel injection pipes ③ and tighten the sleeve nuts ① to the specified torque.

The sleeve nut tightening torque for in-line type injection pump and the distributor type pump is identical.


Tighten them a little at a time evenly so that no undue stress is applied on the pipe line.

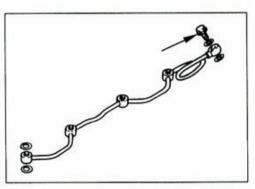
Injection Pipe Sleeve Nut Torque

kg·m (lb.ft/N·m)


2.5 - 3.5 (23.1 - 30.3/24.5 - 34.3)

2) Carefully position and set the clips 2.

An improperly positioned clip will result in objectionable fuel pulsing noise and injection pipe breakage.


 Tighten the injection nozzle holders, which are in temporarily tightened condition in Reassembly 2nd Step, to the specified torque.

Injection Nozzle Holder Tightening

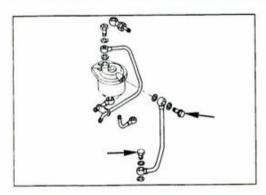
Torque

kg·m (lb.ft/N·m)

7.0 - 8.0 (50.6 - 57.8/68.6 - 78.4)

2

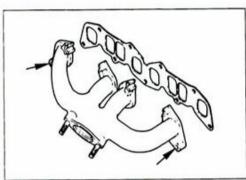
▲ Leak Off Pipe


Install the leak off pipe and tighten the eye bolts to the specified torque.

Leak Off Pipe Torque

kg·m (lb.ft/N·m)

1.0 - 2.0 (7.2 - 14.4/9.8 - 19.6)

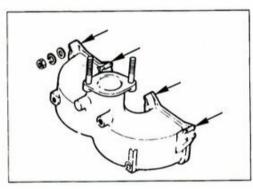

▲ Fuel Pipe

Install the fuel pipes shown in the illustration with tightening the joint bolts to the specified torque.

Fuel Pipe Joint Bolt Torque

kg·m (lb.ft/N·m)

1.0 - 2.0 (7.2 - 14.4/9.8 - 19.6)

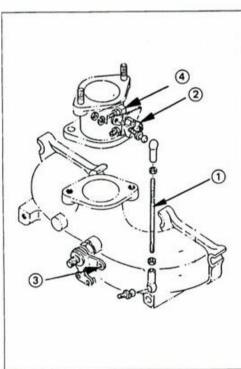


▲ Inlet and Exhaust Manifold

-) Install the inlet and exhaust manifold gasket.
- Install the exhaust manifold first with temporarily tightening the mounting nuts at positions shown by arrows in the illustration.

The nuts at remaining positions will be tightened together with the inlet manifold.

 Install the inlet manifold with temporarily tightening the mounting nuts at positions shown by arrows in the illustration.



 Tighten all of the mounting nuts to the specified torque.

Inlet and Exhaust Manifold Mounting Nut Torque

kg·m (lb.ft/N·m)

1.4 - 2.4 (10.1 - 17.3/13.7 - 23.5)

▲ Engine Control Link (If so equipped)

For the engine equipped with RBD type injection pump governor, a throttle valve and control link is used at the inlet manifold as an engine control.

1) Install the link rod ① to the throttle valve ② and the fulcrum lever ③ but keep the adjusting bolt ④ in fully loosened condition.

In this procedure, adjust the link rod length so that the throttle valve to close completely.

 Adjust the engine idle speed adjusting bolt 4 to permit the engine run in the specified idling speed.

▲ Fan Pulley and Fan Belt

Adjust the fan belt tension referring MAINTENANCE page 23.

++

▲ Generator

▲ Starter

Install the generator and the starter with tightening the fixing bolts to the specified torque.

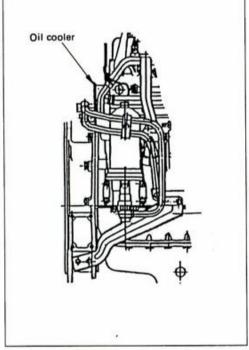
Generator Fixing Bolt Torque

kg·m (lb.ft/N·m)

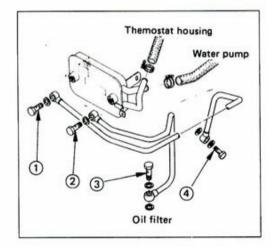
1.3 - 2.3 (9.7 - 15.7/12.3 - 22.1)

Starter Fixing bolt Torque

kg·m (lb.ft/N·m)


6.3 - 9.3 (45.0 - 67.0/61.3 - 90.7)

▲ Oil Cooler (If so equipped and removed in disassembly)


Depending on an engine application, an externally mounted oil cooler is used.

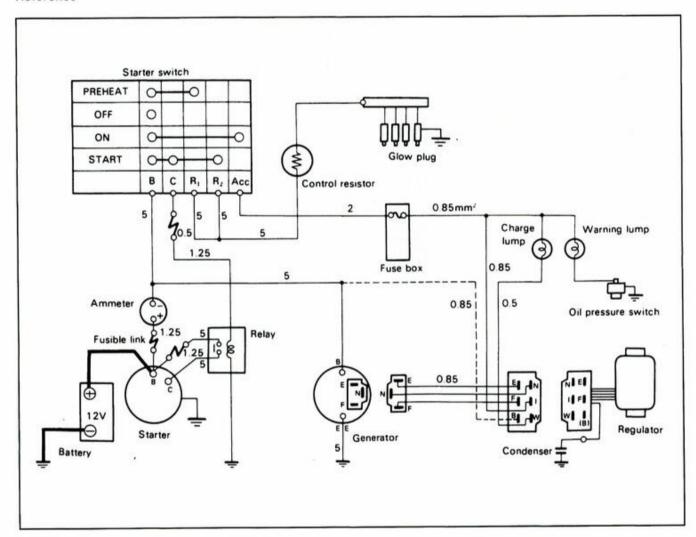
Connect the oil cooler water hoses and the oil pipe lines to the outlet or inlet of the related parts respectively.

Note:

The tightening torques for the oil pipe joint bolts ①, ②, ③, ④ are not particularly specified. Therefore, tighten them carefully with an adequate torque so that the bolts does not be twisted off in a tightening but no oil leakages take place.

ENGINE TUNING OPERATION

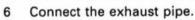
After reassembly, the engine must be turned. This will ensure that the engine operates at its maximum efficiency.



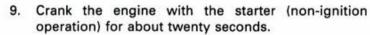
- 1. Mount the engine on a test bench.
- 2. Fill the engine with the specified oil.

3. Connect the cooling pipes pipes and the fuel pipes.

Reference



Connect the electrical wiring.
 Refer to the wiring diagram.



5. Connect the air intake line to the air cleaner.

- Manually operate the fuel feed pump to feed fuel to the engine.
- Bleed the fuel lines of air.
 Refer to Page 21 of Section 2 MAINTENANCE for the air bleeding procedure.

This will prelubricate the engine internal components.

10. Start the engine and allow it to run at 750 to 800 rpm for five minutes.

11. Remove the cylinder head cover while the engine is running.

12. Check that the engine oil is continuously circulating from the oil pump to the valve rockers through the cylinder head.

If there is no oil circulation or if the oil circulation is sluggish, stop the engine and make the appropriate repairs or adjustments.


Reinstall the cylinder head cover.

13. Increase the engine speed to 1,500 rpm to do the engine warming-up operation.

14. Check the engine for oil, fuel, coolant, and air intake leakage.

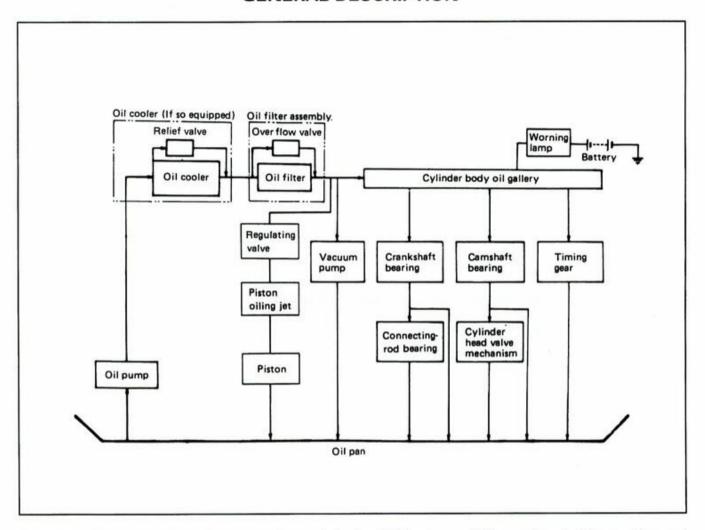
Check for abnormal electrical charging.

17. Check the engine fastening parts for looseness.

18. When the engine coolant temperature reached to 75°C (167°F) or more, increase the engine speed to 2,000 rpm and allow it to run for twenty minutes.

This will give the engine the essential run-in operating time.

- 19. Adjust the engine operation speed to the specified value.
- 20. Stop the engine to complete the tuning procedure.


SECTION 6

LUBRICATING SYSTEM

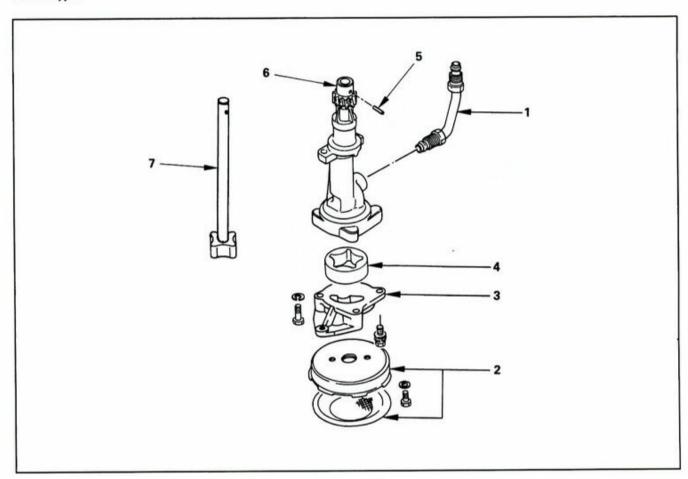
TABLE OF CONTENTS

ITEM	
General description	122
Oil pump	123
Oil filter	
(Replaceable element type)	128
(Disposable cartridge spin-on type with built-in oil cooler)	132
(Disposable cartridge spin-on type)	136
Oil cooler (Externally mounted type)	138

GENERAL DESCRIPTION

The C240 engine lubricating system consists mainly of a full flow type oil filter and trochoid type oil pump. Lubricating oil is pumped from the oil pump to the cylinder body oil gallery. It is then branched off to the vital parts of the engine from the oil gallery.

Depending on the engine application, the following oil filter is used.


- 1. Replaceable element type.
- 2. Disposable cartridge spin-on type with built-in oil cooler.
- 3. Disposable cartridge spin-on type.

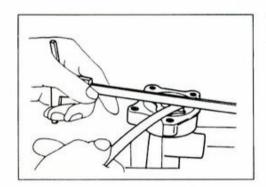
Also depending on the engine application, an externally mounted oil cooler is used.

OIL PUMP

DISASSEMBLY

Rotor type

Disassembly Steps

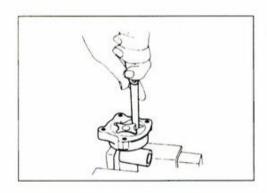

- 1. Oil pipe
- 2. Strainer
- 3. Pump cover
- 4. Vane

- 5. Pin
- 6. Pinion
- 7. Rotor shaft

INSPECTION AND REPAIR

Make the necessary adjustments, repairs, and part replacements if excessive wear or damage is discovered during inspection.

Vane, Rotor, and Cover Clearance


Use a feeler gauge to measure the clearance between the vane, the rotor, and the cover.

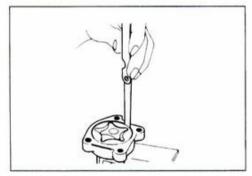
If the clearance between the vane, the rotor, and the cover exceeds the specified limit, the rotor set (pin shaft, rotor, and vane) must be replaced.

Vane, Rotor, and Cover Clearance

mm (in)

Standard	Limit
0.02 - 0.07 (0.0008 - 0.0028)	0.15 (0.0059)

Rotor and Vane Clearance


Use a feeler gauge to measure the clearance between the rotor and the valve.

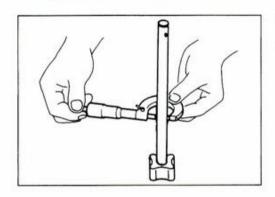
If the clearance between the rotor and the vane exceeds the specified limit, the rotor set (pin, shaft, rotor, and vane) must be replaced.

Rotor and Vane Clearance

mm (in)

Standard	Limit
0.14 (0.0055) or less	0.20 (0.0079)

Vane and Pump Body Clearance


Use a feeler gauge to measure the clearance between the vane and the pump body.

If the clearance between the vane and the pump body exceeds the specified limit, the entire pump assembly must be replaced.

Vane and Pump Body Clearance

mm (in)

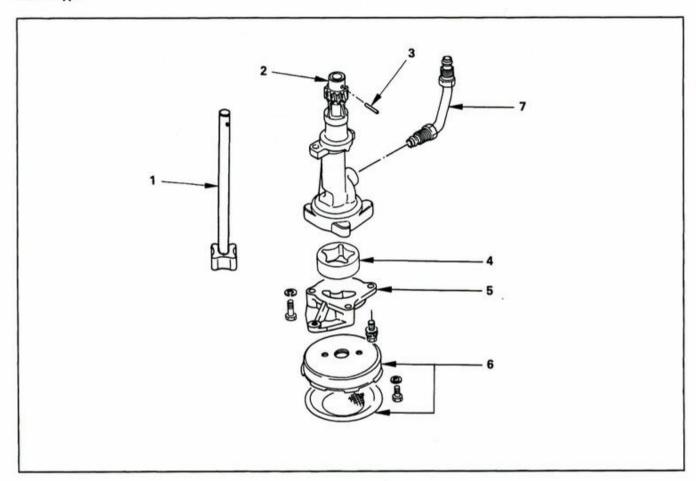
Standard	Limit
0.20 - 0.27 (0.0079 - 0.0106)	0.40 (0.016)

Rotor Shaft and Oil Pump Body Clearance

Use a micrometer to measure the rotor shaft outside diameter.

Use an inside dial indicator to measure the pump body inside diameter.

If the clearance between the rotor shaft and the pump body exceeds the specified limit, the entire pump assembly must be replaced.

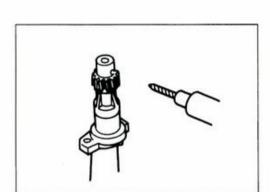

Rotor Shaft and Pump Body Clearance

mm (in)

Standard	Limit
0.04 (0.0016)	0.20 (0.0079)

REASSEMBLY

Rotor type

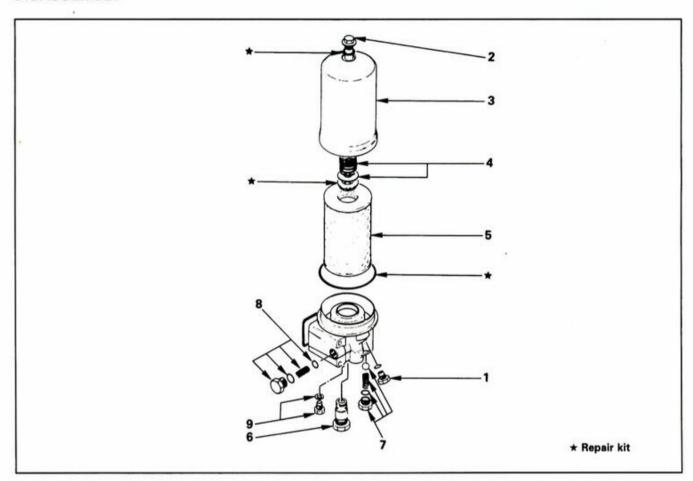


Reassembly Steps

- 1. Rotor shaft
- ▲ 2. Pinion
- ▲ 3. Pin
 - 4. Vane

- 5. Pump cover
- 6. Strainer
- 7. Oil pipe

Important Operations


▲ Pinion

▲ Pin

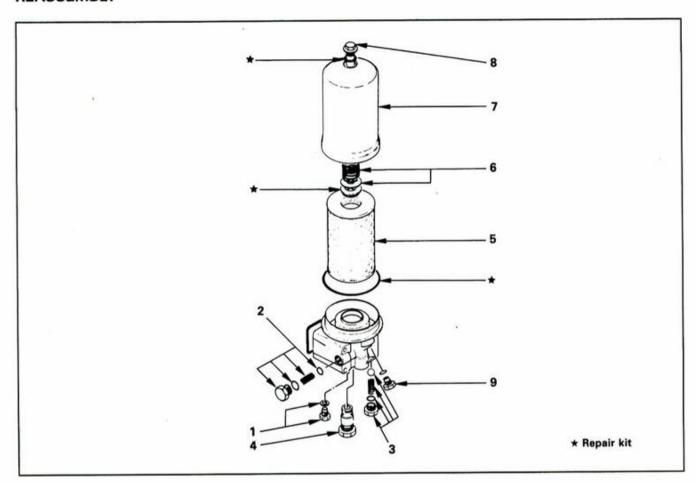
- 1) Install the new rotor shaft to the pump body.
- 2) Set the pinion to the rotor shaft.
- 3) Use a 5 mm (0.20 in) drill a hole through the pinion and the rotor shaft.
- 4) Insert the pin into the hole.
- 5) Caulk the pin.

OIL FILTER (REPLACEABLE ELEMENT TYPE)

DISASSEMBLY

Disassembly Steps

- 1. Drain plug
- 2. Center bolt
- 3. Filter body
- 4. Spring, seat and gasket
- 5. Element


- 6. Relief valve assembly
- 7. Overflow valve assembly
- Oil cooler relief valve (Model with oil cooler)
- Plug and O-ring (Model without oil cooler)

INSPECTION AND REPAIR

Make necessary correction or parts replacements if damage or any other abnormal conditions are found through inspection.

REASSEMBLY

Reassembly Steps

- Plug and O-ring (Model without oil cooler)
- Oil cooler relief valve (Model with oil cooler)
- ▲ 3. Overflow valve assembly
- ▲ 4. Relief valve assembly

- 5. Element
- 6. Spring, seat and gasket
- 7. Filter body
- ▲ 8. Center bolt
- ▲ 9. Drain plug

▲ Plug and O-ring

Install the O-ring the plug with tightening the plug to the specified torque.

Oil Filter Plug Torque

kg·m (lb.ft/N·m)

1.0 - 2.0 (7.3 - 14.5/9.8 - 19.6)

▲ Oil Cooler Relief Valve (Model with Oil Cooler)

Install the oil cooler relief valve with the gaskets and the spring and, tighten the valve to the specified torque.

Oil Cooler Relief Valve Torque

kg·m (lb.ft/N·m)

2.0 - 3.0 (14.5 - 21.7/19.6 - 29.4)

▲ Overflow Valve Assembly

Install the overflow valve with the spring, valve ball and the gasket. Tighten the valve to the specified torque.

Overflow Valve Torque

kg·m (lb.ft/N·m)

2.0 - 3.0 (14.5 - 21.7/19.6 - 29.4)

▲ Relief Valve Assembly

Install the relief valve assembly with gasket and tighten the valve to the specified torque.

Relief Valve Torque

kg·m (lb.ft/N·m)

2.5 - 3.5 (18.0 - 25.2/24.5 - 34.3)

▲ Center Bolt Torque

Install the center bolt with tightening it to the specified torque.

Center Bolt Torque

kg·m (lb.ft/N·m)

2.5 - 3.5 (18.0 - 25.2/24.5 - 34.3)

▲ Drain Plug

Install the drain plug and the gasket with tightening the plug.

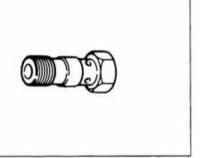
Oil Filter Drain Plug Torque

kg·m (lb.ft/N·m)

1.0 - 2.0 (7.3 - 14.5/9.8 - 19.6)

(DISPOSABLE CARTRIDGE SPIN-ON TYPE WITH BUILT-IN OIL COOLER)

DISASSEMBLY

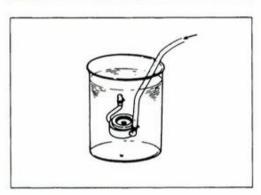

Disassembly Steps

- Drain plug
 Cartridge oil filter
- 3. Oil cooler

- 4. O-ring
- 5. Safety valve
- 6. Relief valve

INSPECTION AND REPAIR

Make the necessary adjustments, repairs, and part replacements if excessive wear or damage is discovered during inspection.

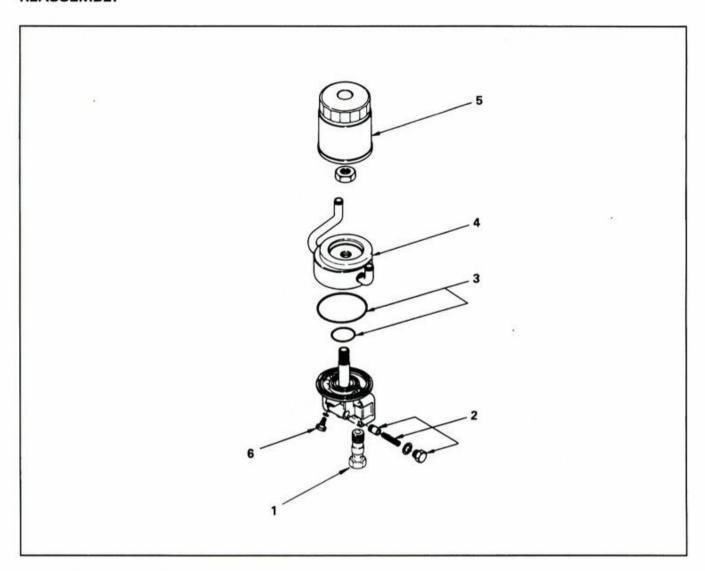

Relief Valve

- Attach an oil pressure gauge to the oil gallery near the oil filter.
- Start the engine to check the relief valve opening pressure.

Relief Valve Opening Pressure

kg/cm²(psi/kPa)

5.8 - 6.2 (82.5 - 88.2/568.4 - 608.6)

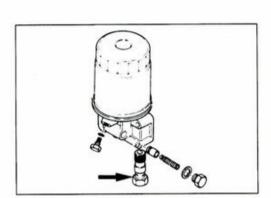


Oil Cooler

Water Leakage At Water Passage

- 1. Plug one side of the oil cooler water passage.
- 2. Submerge the oil cooler in water.
- Apply compressed air (2 kg/cm² (28.4 psi/196 kPa)) to the other side of the oil cooler water passage.
 If air bubbles rise to the surface, there is water leakage.

REASSEMBLY

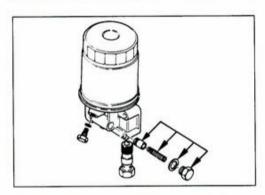


Reassembly Steps

- ▲ 1. Relief valve
- ▲ 2. Safety valve 3. O-ring

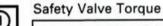
- 4. Oil cooler
- 5. Oil filter cartridge
- ▲ 6. Drain plug

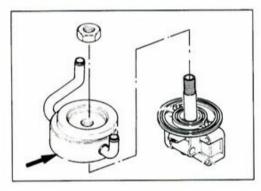
Important Operations


▲ Relief Valve

Tighten the relief valve to the specified torque.

Relief Valve Torque kg·m (lb.ft/N·m)


2.5 - 3.5 (18.0 - 25.2/24.5 - 34.3)


▲ Safety Valve

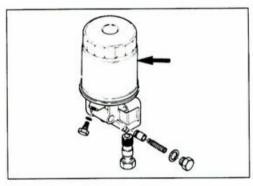
Tighten the safety valve to the specified torque.

kg·m (lb.ft/N·m)

1.5 - 2.5 (10.9 - 18.1/14.7 - 24.5)

▲ Oil Cooler

 Align the oil filter holes with the body knock pins at installation.

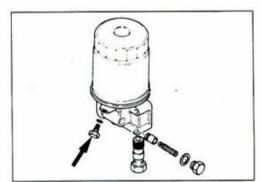

2) Tighten the oil cooler to the specified torque.

Oil Cooler Torque

kg·m (lb.ft/N·m)

kg·m (lb.ft/N·m)

2.5 - 3.5 (18.0 - 25.2/24.5 - 34.3)



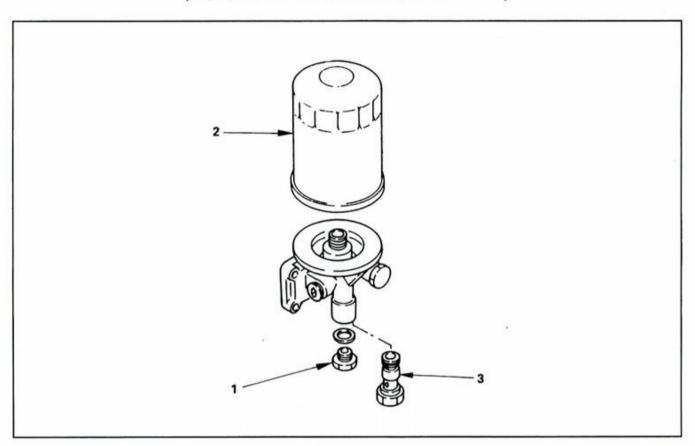
▲ Oil Filter Cartridge

1) Apply engine oil to the O-ring.

- Turn in the cartridge oil filter until the filter sealing face makes contact with the O-ring.
- Turn in the cartridge oil filter an additional 1-1/4 of a turn.

▲ Drain Plug

Drain Plug Torque

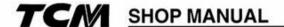

Tighten the drain plug to the specified torque.

1.0 - 2.0 (7.3 - 14.5/9.8 - 19.6)

Refer to MAINTENANCE on the page 16 of this WORK-SHOP MANUAL.

(DISPOSABLE CARTRIDGE SPIN-ON TYPE)

Disassembly Steps


- 1. Drain plug
- 2. Cartridge

3. Relief valve

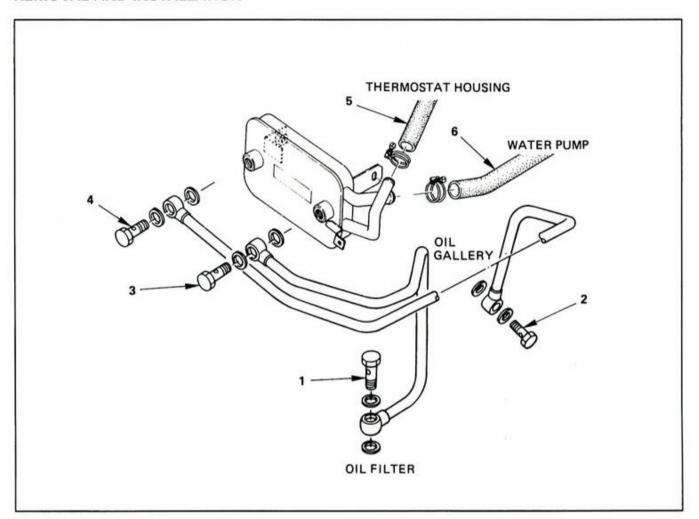
INSPECTION AND REPAIR

Make necessary correction or parts replacements if damage or any other abnormal conditions are found through inspection.

To reassemble the cartridge spin-on type oil filter follow to the disassemble procedure in reverse order

Refer to MAINTENANCE on the page 16 of this Workshop Manual.

Cartridge Type Oil Filter Relief Valve


Torque

kg·m (lb.ft/N·m)

2.5 - 3.5 (18.0 - 25.2 / 24.5 - 34.3)

OIL COOLER (EXTERNALLY MOUNTED TYPE)

REMOVAL AND INSTALLATION

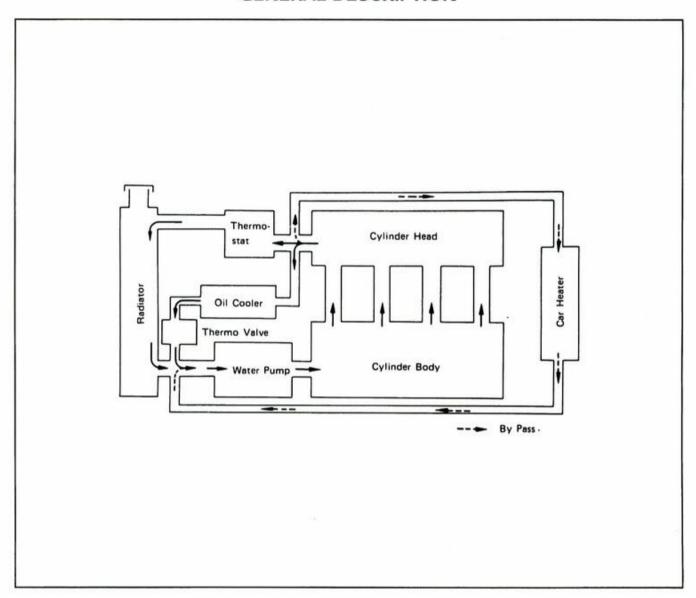
Removal Steps

- 1. Eye bolt (Oil filter side)
- Eye bolt (Cylinder body oil gallery side)
- 3. Eye bolt (Oil cooler side)
- 4. Eye bolt (Oil cooler side)
- Water hose (Thermostat housing side)
- 6. Water hose (Water pump side)

Installation Steps

To install the oil cooler follow to the removal steps in reverse order.

Refer to REASSEMBLY on the page 117 of this Workshop Manual.


SECTION 7

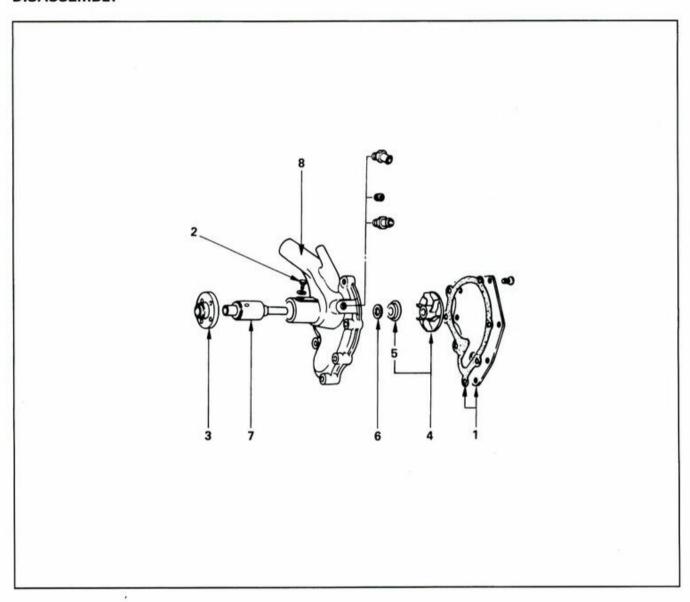
COOLING SYSTEM

TABLE OF CONTENTS

ITEM PA	PAGE	
General description	140	
Water pump	141	
Thermostat	147	

GENERAL DESCRIPTION

The engine cooling system consists of the radiator, the water pump, the cooling fan, and the thermostat.

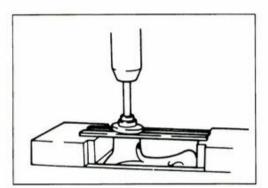

To quickly increase cold engine coolant temperature for smooth engine operation, the coolant is circulated by the water pump and thermostat through the by-pass hose and back to the cylinder body. The coolant does not circulate through the radiator.

When the coolant temperature reaches 82°C (180°F), the thermostat will begin to open and a gradually increasing amount of coolant will circulate through the radiator.

The thermostat will be fully open when the coolant temperature reaches 95°C (203°F). All of the coolant is now circulating through the radiator for effective engine cooling.

WATER PUMP

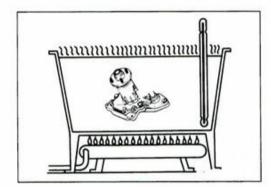
DISASSEMBLY



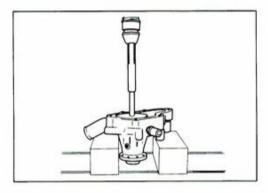
Disassembly Steps

- 1. Cover
- 2. Set screw
- ▲ 3. Cooling fan center
 - 4. Impeller

- ▲ 5. Seal unit
 - 6. Thrower
 - 7. Bearing unit
 - 8. Water pump body



Important Operations

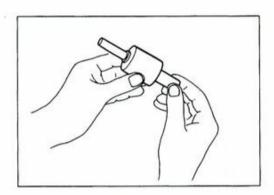

▲ Cooling Fan Center

Remove the fan center with a bench press and a bar.

▲ Bearing Unit

Heat the pump body in hot water 80 - 90°C/176 -194°F).

Remove the impeller and seal unit with a bench press and bar.

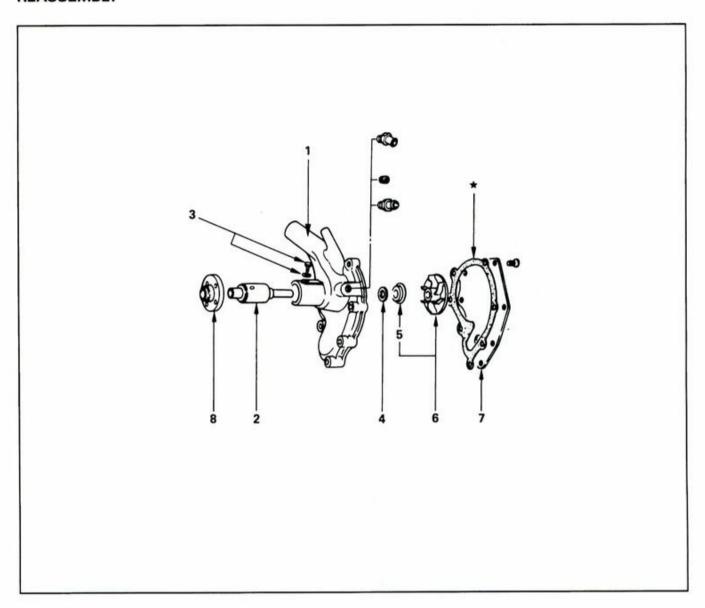


Note:

Do not drive out the impeller with a hammer. Damage to the impeller will result.

INSPECTION AND REPAIR

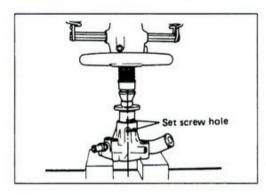
Make the necessary adjustments, repairs, and part replacements if excessive wear or damage is discovered during inspection.



Bearing Unit

Check the bearing for abnormal noise, binding, and other abnormal conditions.

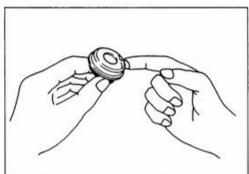
REASSEMBLY



Reassembly Steps

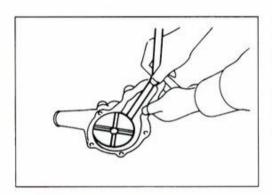
- Water pump body
 Bearing unit
- ▲ 3. Set screw
 - 4. Thrower

- ▲ 5. Seal unit
 - 6. Impeller
 - 7. Cover
 - 8. Cooling fan center


Important Operations

▲ Bearing Unit ▲ Set Screw

- 1) Align the bearing set screw hole with the pump body set screw hole.
- 2) Press the bearing unit into place.
- 3) Secure the bearing with the set screw.

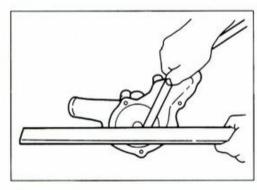


▲ Seal Unit

▲ Impeller

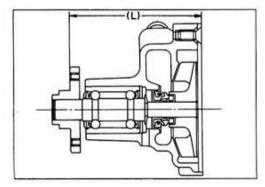
- Apply a thin coat of liquid gasket to the seal unit outer periphery.
- 2) Install the seal unit.

3) Use a bench press to install the impeller so that the specified clearance is provided between the impeller and the pump body.



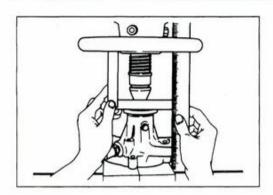
Impeller and Body Clearance

mm (in)


Standard	
0.3 - 0.6 (0.012 - 0.024)	

4) Use a feeler gauge and a straight edge to measure the impeller rear face depth from the pump body face.

Impeller Rear Face Depth	mm (in)
Standard	
0.6 - 0.8 (0.024 - 0.031)	



▲ Cooling Fan Center

Measure the distance between the cooling fan fitting face and the rear cover fitting face.

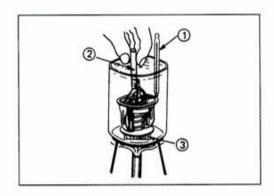
Cooling Fan Center and Rear Cover Fitting
Face Distance mm (in)

Standard	
110.7 - 111.3 (4.36 - 4.38)	
or 119.1 - 119.7 (4.69 - 4.71)	

Note:

 The fan center and impeller and installed to the water pump shaft with a press.

Never attempt to remove and reinstall the fan center and the impeller a second time. Replace the entire water pump assembly.


Removing and reinstalling the fan center and the impeller a second time may result in the breakdown of the water pump during engine operation and subsequent serious overheating problems.

- The water pump assembly must be replaced whenever the fan center and impeller pressure force falls below 200 kg (441 lb/1,960 N).
- Do not attempt to strike the bearing into position with a hammer or similar object. Damage to the bearing will result.

THERMOSTAT

INSPECTION AND REPAIR

Make the necessary adjustments, repairs, and part replacements if excessive wear or damage is discovered during inspection.

Operation Test

- 1. Completely submerge the thermostat in water.
- Heat the water.
 Stir the water constantly to avoid direct heat being applied to the thermostat.
- 3. Check the thermostat initial opening temperature.

Thermostat Initial Opening Temperature

°C (°F

80 - 84 (176 - 183)

4. Check the thermostat full opening temperature.

Thermostat Full Opening Temperature

°C (°F)

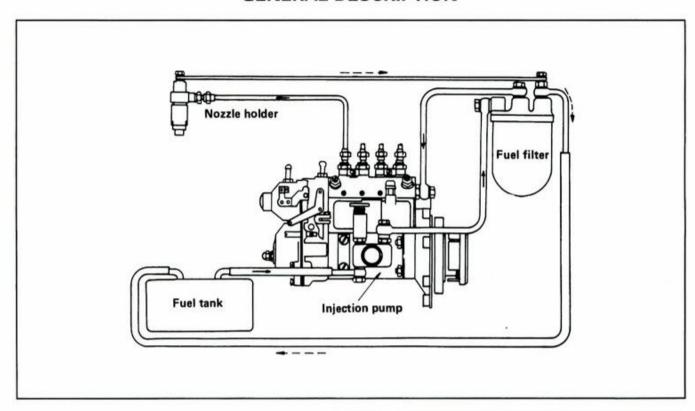
95 (203)

Valve Lift At Fully Open Position

mm (in)

8.0 (0.30)

- 1 Thermometer
- ② Agitating rod
- ③ Wooden piece


SECTION 8

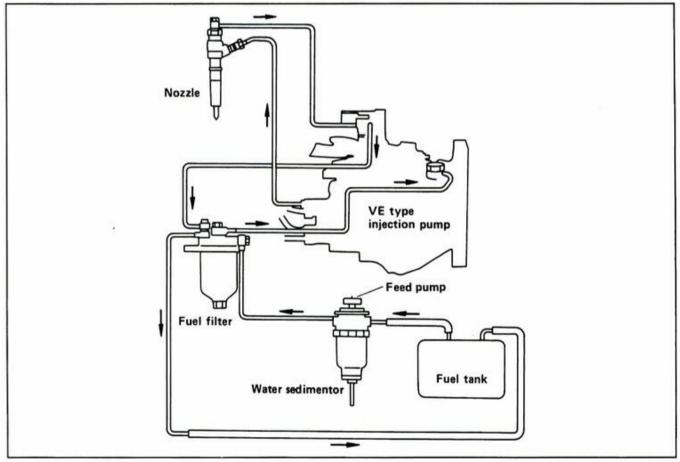
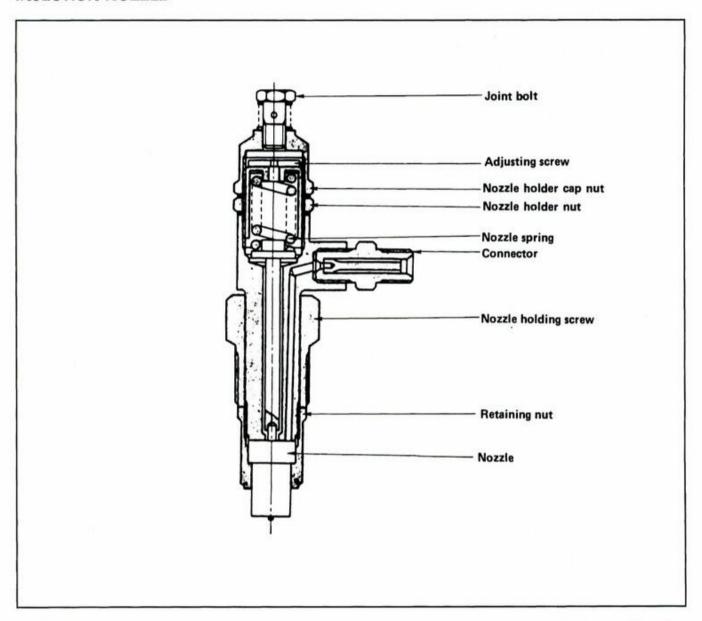

FUEL SYSTEM

TABLE OF CONTENTS

ITEM P.	AGE
General description	150
Injection nozzle	153
Fuel filter	155
Injection pump calibration data	156

GENERAL DESCRIPTION

Although, as described in DESIGN FEATURES AND GENERAL OUTLINE of the section 1, GENERAL INFOR-MATION, either of the in-line type injection pump or the VE type (i.e. distributor type) injection pump is equipped depending on the engine application, the basic system function is identical.

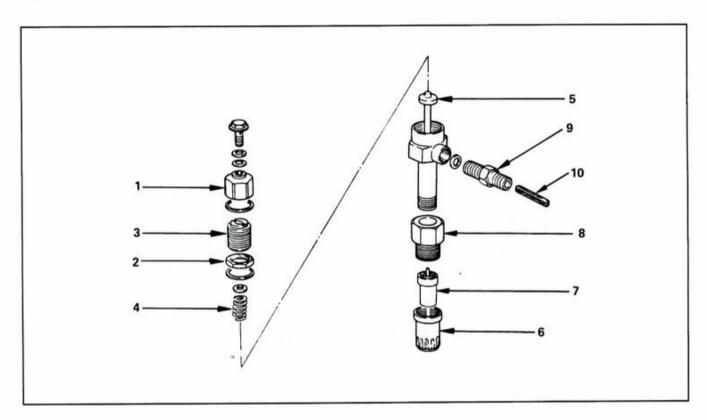

The fuel system consists of the fuel tank, the water sedimentor (if so equipped) the fuel filter, the injection pump, and the injection nozzle.

The fuel from the fuel tank passes through the water sedimentor and the fuel filter where water particles and other foreign material are removed from the fuel.

Fuel, fed by the injection pump plunger, is delivered to the injection nozzle in the measured volume at the optimum timing for effective engine operation.

As no fuel feed pump is provided on the VE engine type injection pump, a water sedimentor with built-in type feed pump is used in this type of fuel systems.

INJECTION NOZZLE

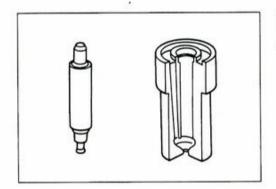


A Bosch throttle type injection nozzle is used. It consists of the nozzle body and the needle valve assembly.

The injection nozzle assembly sprays pressurized fuel from the injection pump into the combustion chamber through the nozzle body injection orifice.

INJECTION NOZZLE

DISASSEMBLY

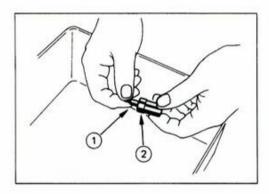


Disassembly Steps

- 1. Nozzle holder cap nut
- 2. Nozzle holder nut (C223 only)
- 3. Adjusting screw
- 4. Nozzle spring
- 5. Push rod

- 6. Retaining nut
- 7. Nozzle and body
 - 8. Nozzle holding screw
 - 9. Connector
 - 10. Edge filter

Important Operations

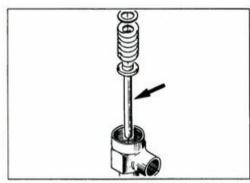

▲ Nozzle and Body

Remove the nozzle assemblies from the nozzle holders.

The nozzle needle valve and nozzle body combinations must not be interchanged.

INSPECTION AND REPAIR

Make the necessary adjustments, repairs, and part replacements if excessive wear or damage is discovered during inspection.



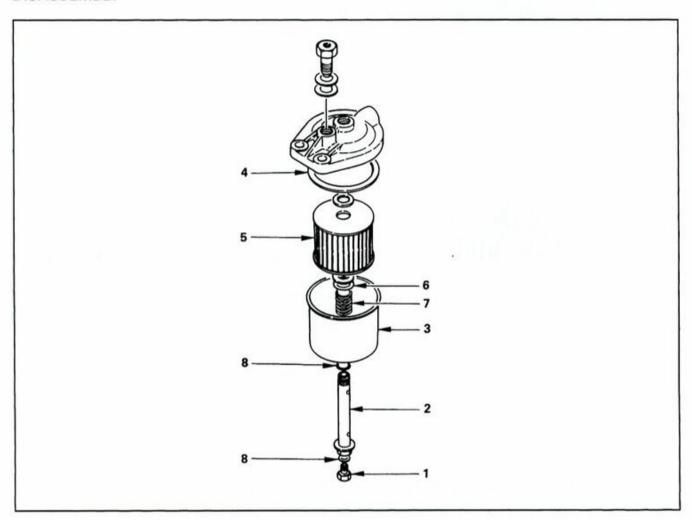
Injection nozzle Needle Inspection

- 1. Remove the nozzle needle from the nozzle body.
- Carefully wash the nozzle needle and the nozzle body in clean diesel fuel.
- Check that the nozzle needle moves smoothly inside the injection nozzle body.

If the nozzle needle does not move smoothly, it must be replaced.

Push Rod Inspection

Check both push rod seating positions (needle valve and spring seat) for excessive wear and cracking.


If either of these two conditions are present, the push rod must be replaced.

REASSEMBLY

To reassemble the injection nozzle assembly, follow the disassembly procedure in the reverse order.

FUEL FILTER (REPLACEMENT ELEMENT TYPE)

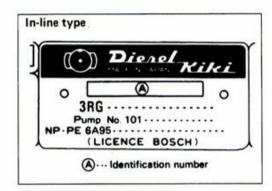
DISASSEMBLY

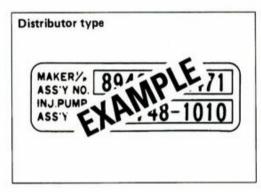
Disassembly Steps

- 1. Drain plug
- 2. Center bolt
- 3. Filter body
- 4. Body cover gasket

- 5. Filter element
- 6. Spring seat
- 7. Spring
- 8. Gasket

INSPECTION AND REPAIR


Make necessary adjustments, repairs and part replacements if excessive wear or damage is discovered during inspection.



REASSEMBLY

To reassemble the fuel filter, follow the disassembly procedure in the reverse order. Refer to MAINTENANCE on the page 2-4 of this Workshop Manual.

INJECTION PUMP CALIBRATION DATA

IDENTIFICATION PLATE AND PRODUCT SERIAL NUMBER

- Injection pump adjustment and repair should be made by the nearest DKKC (Diesel Kiki Co., Ltd.) or ROBERT BOSCH Authorized Service Outlet.
- When you ask such authorized service outlet the adjustment or repair, the Identification Plate and Product Serial Number will give them a necessary clue to get technical data distributed by the manufacturers previously.

Without this data, the Service Outlet will be unable to effectively service your injection pump.

If you are unable to locate the data applicable to your injection pump.

Please contact ISUZU MOTORS LTD through your machine supplier.

Do not remove the Identification Plate and Product Serial Number from the injection pump.

Keep the Identification Plate and Product Serial Number clean at all times. Do not allow it to rust or become illegible.

Note: Examples of test conditions and calibration data are as follows.

1. In-Line Type

TEST CONDITIONS REQUIRED FOR THE FUEL INJECTION AMOUNT ADJUSTMENT

*DKKC No.: 105780-0000 Injection Nozzle Bosch Type No.: DN12DS12T DKKC No.: 105780-2080 Injection Nozzle Holder Boshc Type No.: EF8511/9A KAMPLE 175 (2488.5) Injection Starting Pressure kg/cm²(psi) Injection Line Dimensions 2.0 (0.079) Inside Diameter 6.0 (0.236) Outside Diameter 600.0 (23.6) Length 1.6 (22.75) Transfer Pump Pressure ISO4113 or SAE Standard Test Oil (SAEJ967D) Testing Diesel Fuel 40 - 45 (104 - 113) °C(°F) Operating Temperature Clockwise (Viewed from the drive side) **Pump Rotation Direction**

INJ. PUMP CALIBRATION DATA

ENGINE MODEL 6BD1T Ass'y No. 000000-0000

Date:

Company: ISUZU

No. 0-00000-000-0

Injection pump: PES4A

00000-0000

Governor : EP/RSV 000000-0000

Nozzle Hold

Timing device:

(BOSCH Type No. EF8511/9A)

1. Test Conditions:

Pump rotation:

clockwise (viewed from drive side)

Nozzle: 000000-0000

(BOSCH Type No. DN12SD12T)

Nozzle opening pressure: 175 Kg/cm²

Injection pipe: Inner Dia. 2

Overflow valve opening pressure

Oil Temp. : 40+5 °C

essure: 1.6 Kg/cm2

Kg/cm²

2. Injection Timing:

Pre-stroke: No. 1 Plunger

3.4 ± 0.05 mm

Note: Adjust with control rod position of

mm

Injection order : $1 \frac{1}{90^{\circ} + 30^{\circ}}$ 3, $1 \frac{1}{180^{\circ} + 30^{\circ}}$ 4, $1 \frac{270^{\circ} + 30^{\circ}}{270^{\circ} + 30^{\circ}}$ 2

(interval:

*±30")

Plungers are numbered from the Drive side.

: 000000-0000

ength 600 mm

Tappet clearance: Bolt adjustment type; More than 0, 3mm for all cylinders.

: Shim adjustment type ; Manually rotate the camshaft 2~3 times and confirm that

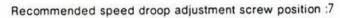
it rotates smoothly.

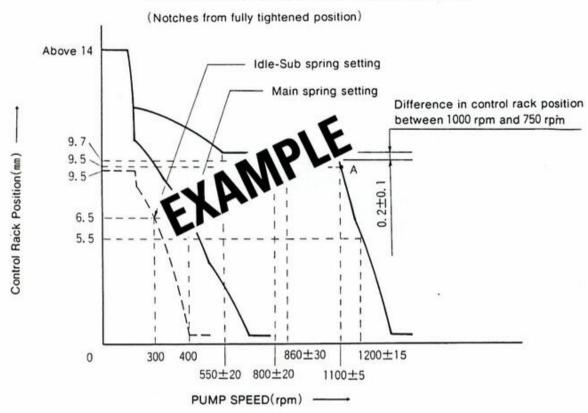
4. Injection Quantity:

Adjust- ng Point	Rod Position (mm)	Pump Speed (r.p.m)	Injection Q'ty (cc/1000 strokes)	Max. var bet. cyl (%)	Fixed	Remarks
Α	9.5	1,100	71.1 ~ 74.1	±2	Rod	Basic
н	Approx. 6.5	400	7.4 ~ 10.2	±14	Rod	
Α	9. 5	1,100	71.1 ~ 74.1	-	Lever	Basic
	· ·			PLE		
			EXAM			

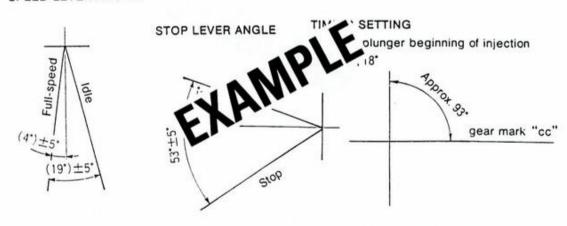
5.	Timing	Advance	Specification	1
----	--------	---------	---------------	---

Pump Speed (r.p.m)			
Advance Angle (deg.)			




Service Department

DIESEL KIKI CO., LTD. 3-6-7 SHIBUYA, SHIBUYA-KU, TOKYO 150, JAPAN Tel. (03) 400-1551 - Fax: (03) 499-4115


00000-0000

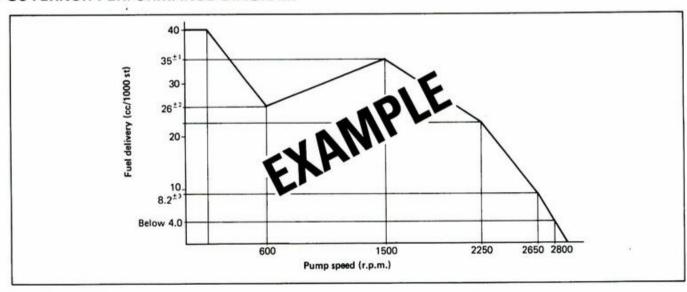
3. GOVERNOR ADJUSTMENT

SPEED LEVER ANGLE

2. Distributor Type

INJECTION VOLUME AND GOVERNOR PERFORMANCE DIAGRAM

Identification number: 104749-1030
Test diesel fuel: Bosch diesel fuel OL61V11


1.	Settings	Pump Speed (rpm)	Fuel delivery (cc/1000st.)
1.1	Idle speed regulation	315	4.7-8.7
1.2	Start	100	Above 58

2. Test Specifications				
2.1 Timing device	N = rpm mm	C ⁰⁰⁰	1500 3.6-4.2	2300 7.0-7.8
2.2 Supply pump	N = rpm	3.9-4.5	1500 5.3-5.7	2150 6.6-7.2
Overflow delivery	CXAIN	1000 48-91		

Speed control lever	Pump speed (rpm)	Fuel delivery (cc/1000st.
End stop	1500	34.6-36.6
	600	24.4-28.4
	2225	30.3-34.3
	2650	5.2 - 11.2
	2800	Below 4.1
Switch-off	315	0
Idle stop	315	4.7-8.7
	365	Below 3.6
Cold start device	0	1.9-2.3mm
	560-760	Cancel
2.4 Solenoid	Max. cut-in voltage	8V
	test voltage	12V-14V

Desig- nation	For assembly and adjustment (mm)
К	3.2-3.4
KF	5.7 - 5.9
MS	1.7 - 1.9
α	21-29 deg.
A	7.5 — 11 mm
β	36-46 deg.
В	10.5 — 14.6 mm
Observat	tions

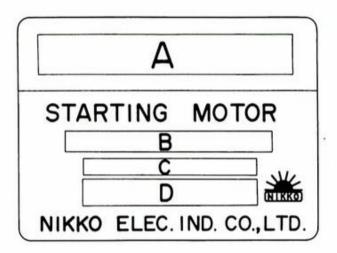
GOVERNOR PERFORMANCE DIAGRAM

SECTION 9

ENGINE ELECTRICALS

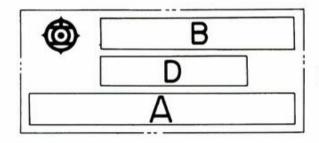
TABLE OF CONTENTS

ITEM	
Starter identification	162
Starter main data and specification	163
Starter sectional view	164
Starter exploded view	165
Generator identification	166
Main data and specification	167
Generator sectional view	169
Generator exploded view	170


STARTER IDENTIFICATION

The starter identification plate is attached to the starter outside yoke. The ISUZU part number, the manufacturer's code number, and other important information are stamped on the plate.

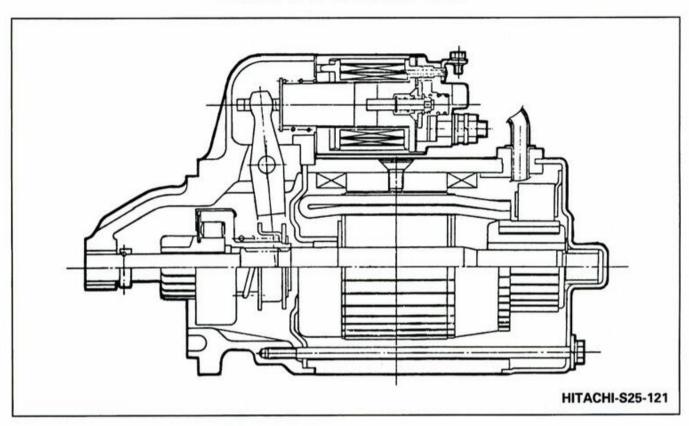
Refer to the identification plate together with the "Main Data and Specifications" Tables and accompanying charts in this Manual when requesting service assistance from a qualified electrical repair shop.

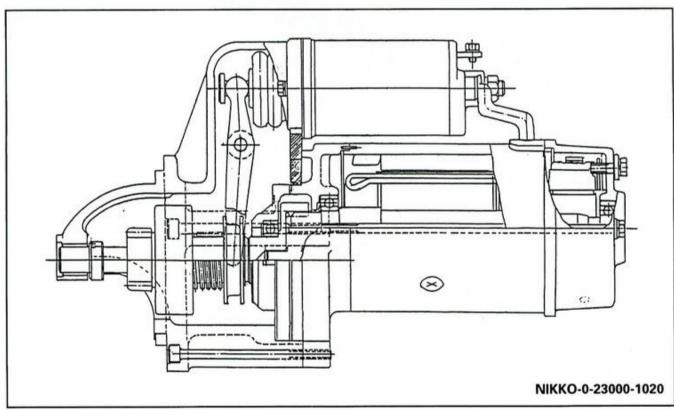

If you are unable to locate the data applicable to your engine, please contact ISUZU MOTOR LIMITED through your machine supplier.

NIKKO IDENTIFICATION PLATE

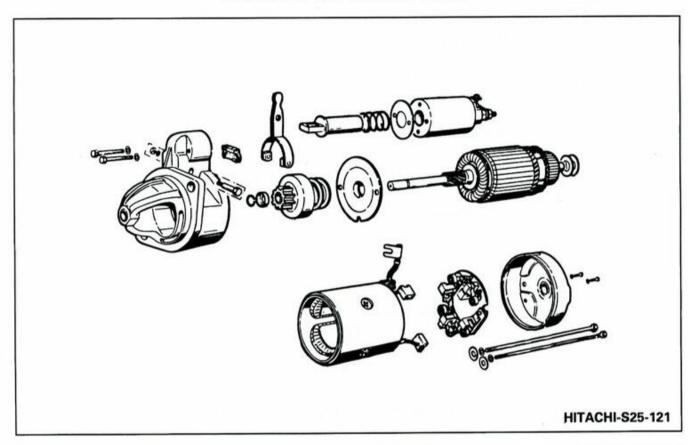
- A: Isuzu part number
- B: Manufacturer's code number
- C: Rated output
- D: Manufacturer's production mark

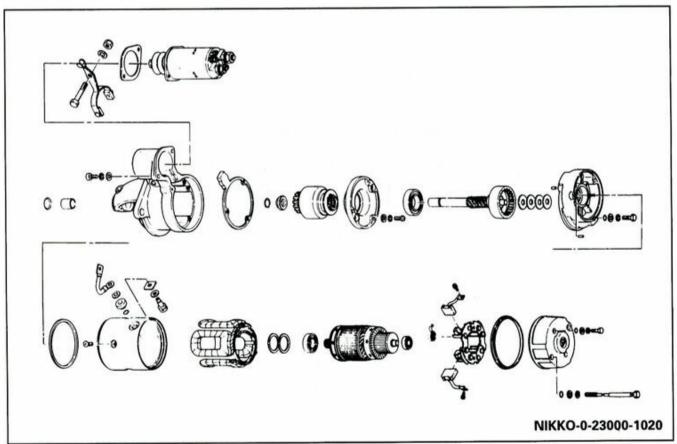
HITACHI IDENTIFICATION PLATE



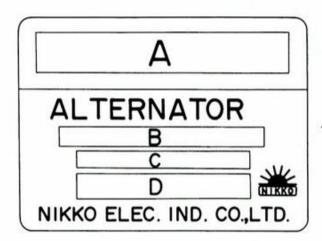

- A: Isuzu part number
- B: Manufacturer's code number
- C: Rated output
- D: Manufacturer's production mark

STARTER MAIN DATA AND SPECIFICATIONS


Isuzu Part No.		5-81100-129-0	5-81100-174-2
Manufacturer's code No.		S25-121 (HITACHI)	0-23000-1020 (NIKKO)
Rated voltage	(V)	24	12
Rated output	(kW)	3.5	2.2
Rating	(Sec)	30	30
Direction of rotation (Viewed from the pinion side)		Clockwise	Clockwise
Clutch type		Roller	Roller
Terminal voltage (No load)	(V)	24	12
Minimum current (No load)	(A)	Less than 90	130
Starter minimum operating speed (No load)	(rpm)	More than 6000	More than 4000
Pinion gear		66	
Modules		2.75	2.75
Number of teeth		9	9
Outside diameter	mm(in.)	33	33
Travel distance	mm(in.)	1.51	1.51
Yoke outside diameter	mm(in.)	ADIE	90 (3.55)
Number of poles	-V 1	MPLE	4
Magnetic switch (at 20°C [68°F])	FXM		
Series coil resistance	(Ω)	0.70	0.23
Shunt coil resistance	(Ω)	2.0	0.69
Brush length			
Standard	mm(in.)	19.5 (0.77)	19.0 (0.75)
Limit	mm(in.)	11.5 (0.45)	12.0 (0.47)
Brush spring standard fitting load	kg/(lbs.)	2.75 (6.01)	4.5 (9.92)
Commutator ,			
Outside diameter	1		000000000000000000000000000000000000000
Standard	mm(in.)	48.0 (1.89)	36.0 (1.42)
Limit	mm(in.)	45.0 (1.77)	35.0 (1.38)
Difference between the largest and smallest diameters (Run-out)			
Standard	mm(in.)	0.05 (0.002)	0.015 (0.0006)
Limit	mm(in.)	0.4 (0.016)	0.1 (0.004)
Depth of undercut mica			
Standard	mm(in.)	0.5 - 0.8 (0.020 - 0.031)	0.7 — 0.9 (0.028 — 0.036)
Limit	mm(in.)	0.2 (0.008)	0.2 (0.008)

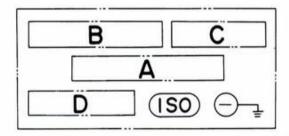

STARTER SECTIONAL VIEW

STARTER EXPLODED VIEW


GENERATOR IDENTIFICTAION

The generator identification plate is attached to the generator rear bracket. The ISUZU part number, the manufacturer's code number, and other important information are stamped on the plate.

Refer to the identification plate together with the "Main Data and Specifications" Tables and accompanying charts in this Manual when requesting service assistance from a qualified electrical repair shop.


If you are unable to locate the data applicable to your engine, please contact ISUZU MOTORS LIMITED through your machine supplier.

NIKKO IDENTIFICATION PLATE

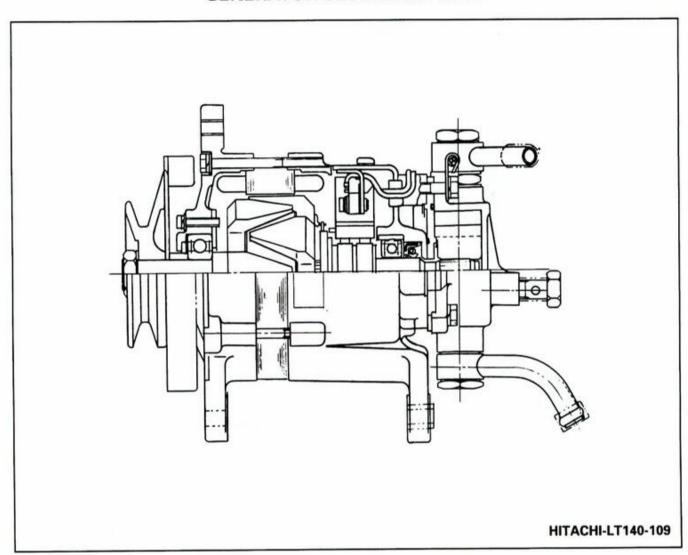
- A: Isuzu part number
- B: Manufacturer's code number
- C: Rated output
- D: Manufacturer's production mark

HITACHI IDENTIFICATION PLATE

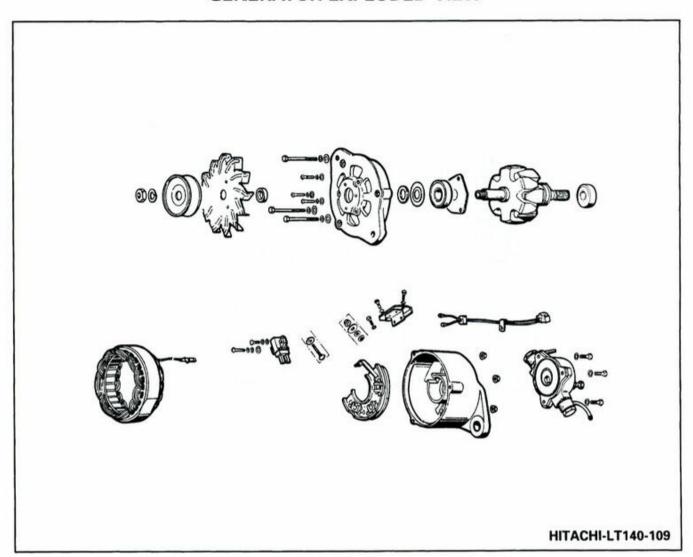
- A: Isuzu part number
- B: Manufacturer's code number
- C: Rated output
- D: Manufacturer's production mark

MAIN DATA AND SPECIFICATIONS

GENERATOR


Isuzu Part No.	5-81200-266-2	
Manufacturer's code No. (HITA)	anufacturer's code No. (HITACHI)	
Rated voltage	(V)	12
Rated output	(A)	40
Operating speed	(rpm)	1050 — 11000
Rated speed	(rpm)	5000
Rated output at r.p.m.	(Amp./Volt/rpm)	30 or more/14/2500 39 or more/14/5000
No-load output at 0 Amp.	(Volt/rpm)	14/1050 or less
Direction of rotation as viewed from pulley side		Clockwise
Polarity grounded		Negative
Pulley diameter	mm(in.)	77.
Coil resistance at 20°C	10.	+
Rotor coil	ANY	4.0
Stator coil [U-V-W]	(11)	0.40
Brush length	XAMP!	
Standard	mm(in.)	20
Limit	mm(in.)	14
Brush spring standard fitting load	(g)	360
Slip ring diameter		
Standard	mm(in.)	31.6
Limit	mm(in.)	30.6
Shaft diameter		
Front	mm(in.)	15
Rear	mm(in.)	12
Regulator's applicable		
Isuzu part No.		9-8225-3107-0
Manufacturer's code No.		TL1Z-66

MAIN DATA AND SPECIFICATIONS


REGULATOR

Isuzu Part No.		9-8225-3107-0	
Manufacturer's code No. (HITACHI)		TL1Z-66	
Voltage regulator			
Regulated voltage	(V)	14.0 — 15.0	
Yoke gap	mm(in.)	0.9 — 1.0 (0.035 — 0.040)	
Core gap	mm(in.)	0.6 — 1.0 (0.031 — 0.040)	
Point gap	mm(in.)	0.35 — 0.45 (0.016 — 0.020	
Relays			
Actuating voltage	-10	IE _	
Generator relay: at N. terminal Field relay: at A. terminal	MY	2-3	
Yoke gap	mm(in.)	0.9 — 1.0 (0.035 — 0.040)	
Core gap	mm(in.)	0.8 — 1.2 (0.031 — 0.047)	
Point gap	mm(in.)	0.4 — 0.6 (0.016 — 0.024)	
Resistance			
Voltage coil	(Ω)	10.3	
Generator coil	(Ω)	_	
Field coil	(Ω)	31.9	
Conditions for adjustment		With connector faced up	

GENERATOR SECTIONAL VIEW

GENERATOR EXPLODED VIEW

SECTION 10

TROUBLESHOOTING

TABLE OF CONTENTS

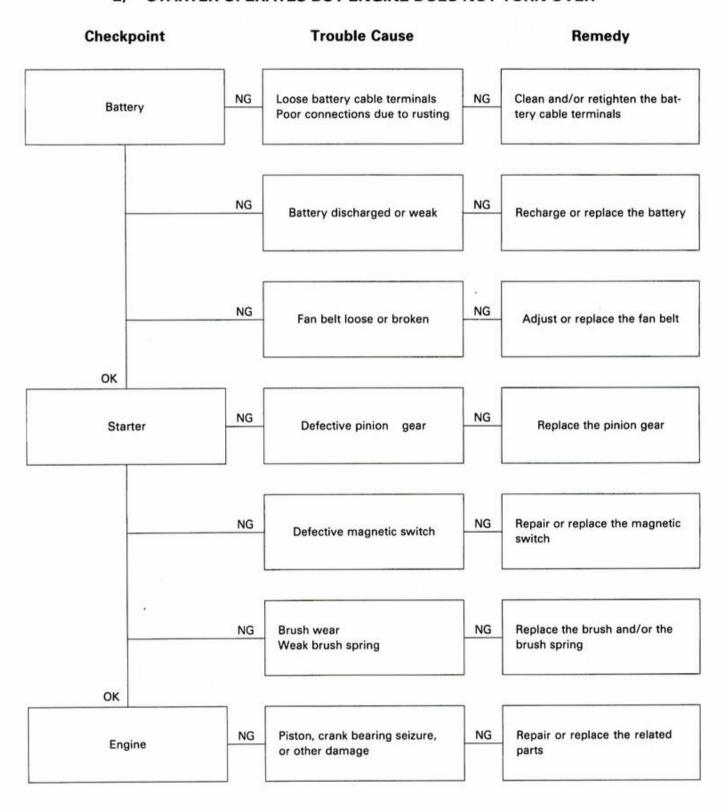
<i>1</i> P	
Hard starting	172
1) Starter inoperative	172
2) Starter operates but engine does not turn over	173
Engine turns over but does not start though fuel is being delivered to the injection pump	174
4) Engine turns over but does not start	175
Unstable low idling	176
Insufficient power	179
Excessive fuel consumption	182
Excessive oil consumption	184
Overheating	185
Whity exhaust smoke	. 187
Darkish exhaust smoke	. 188
Oil pressure does not rise	. 189
Abnormal engine noise	191

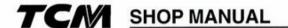
Note:

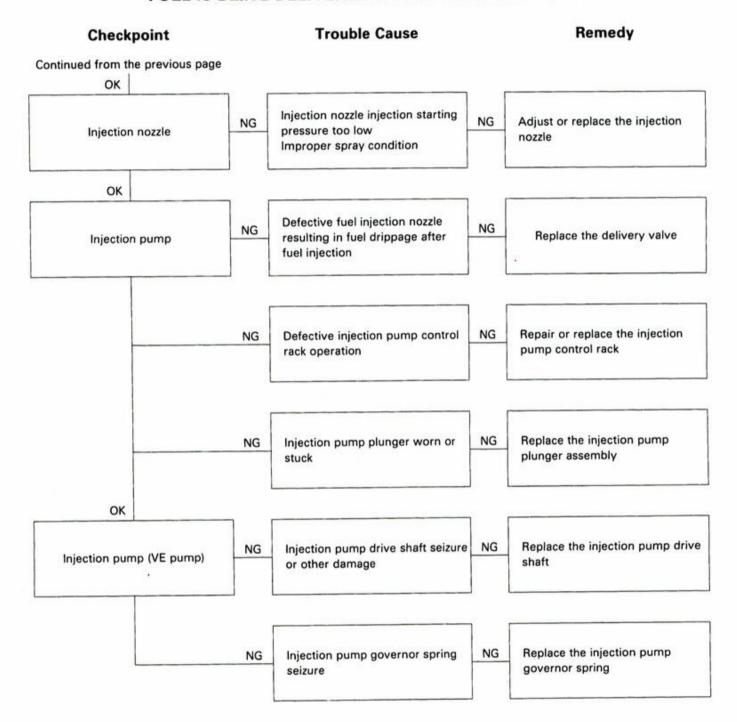
Use this section to quickly diagnose and repair engine failures.

Each troubleshooting chart has three headings arranged from left to right

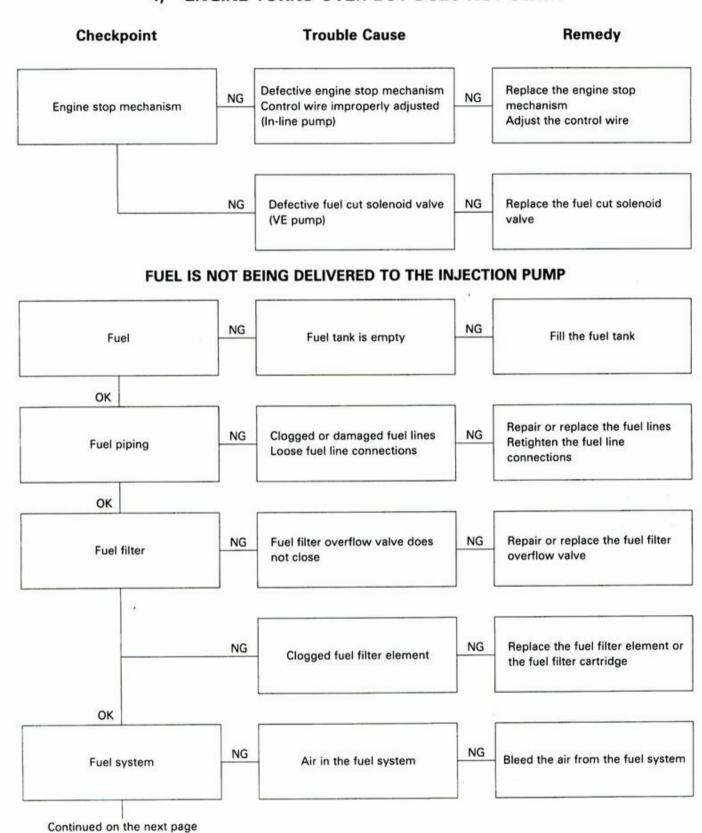
- (1) Check point
- (2) Trouble cause
- (3) Remedy



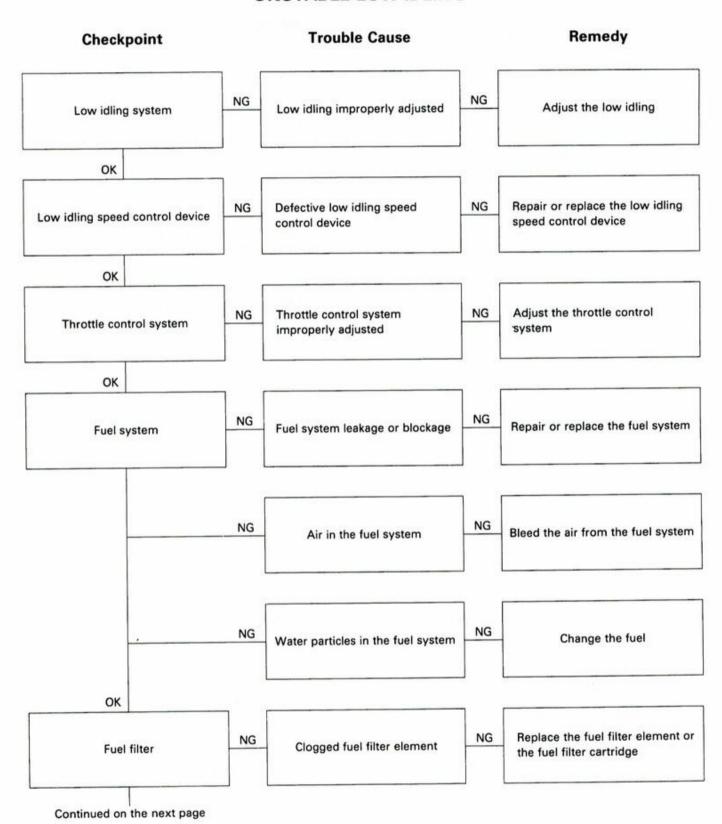

1) STARTER INOPERATIVE



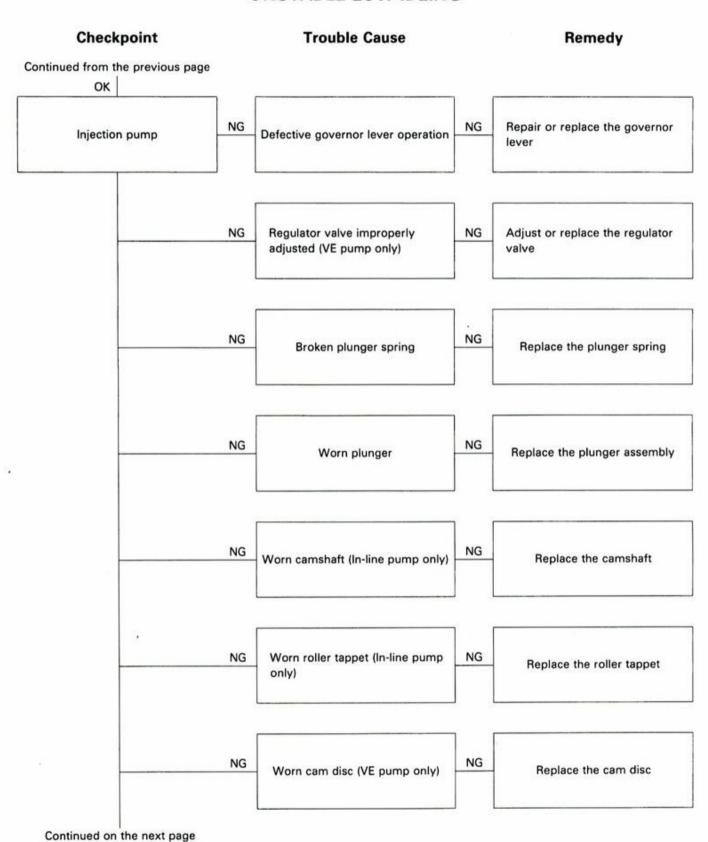
2) STARTER OPERATES BUT ENGINE DOES NOT TURN OVER



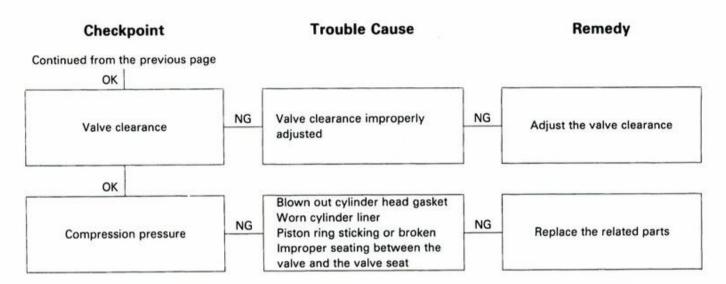
3) ENGINE TURNS OVER BUT DOES NOT START FUEL IS BEING DELIVERED TO THE INJECTION PUMP



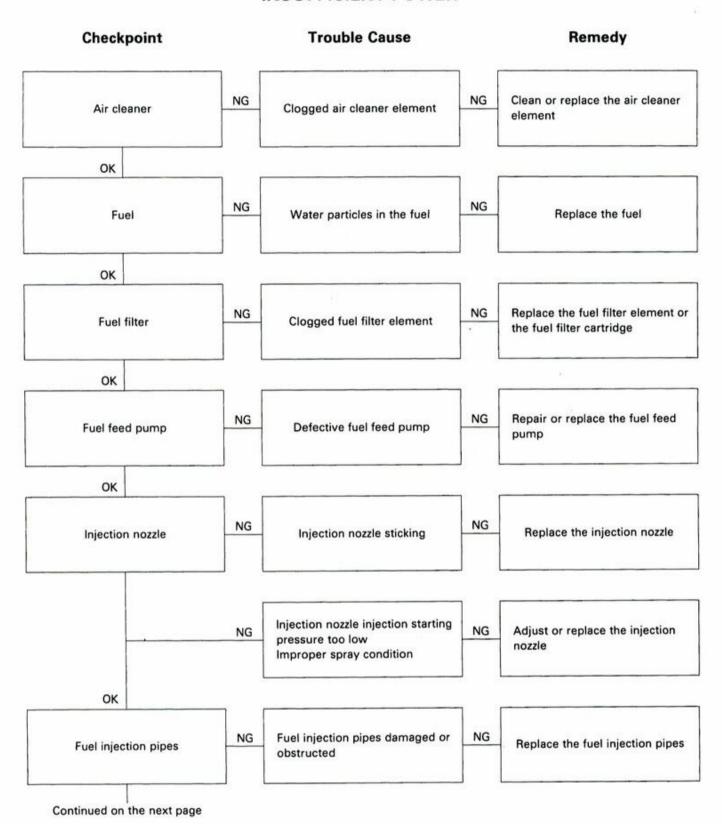
4) ENGINE TURNS OVER BUT DOES NOT START



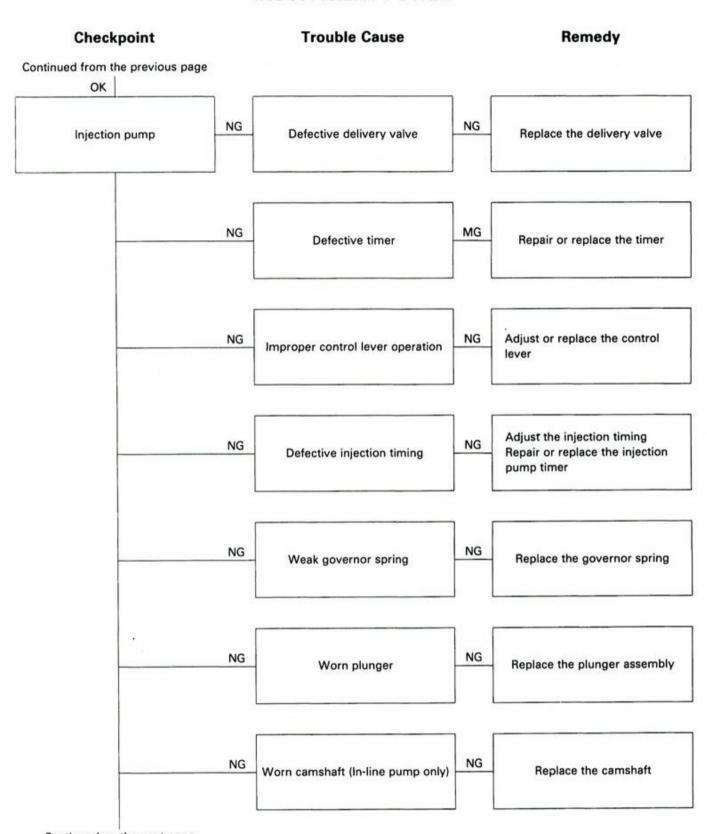
UNSTABLE LOW IDLING



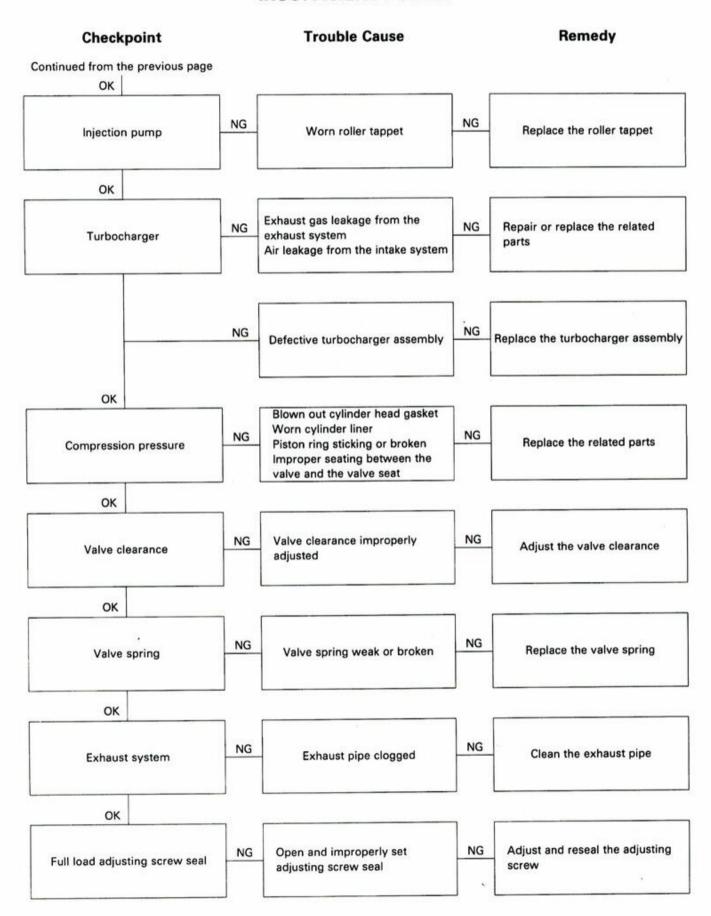
UNSTABLE LOW IDLING



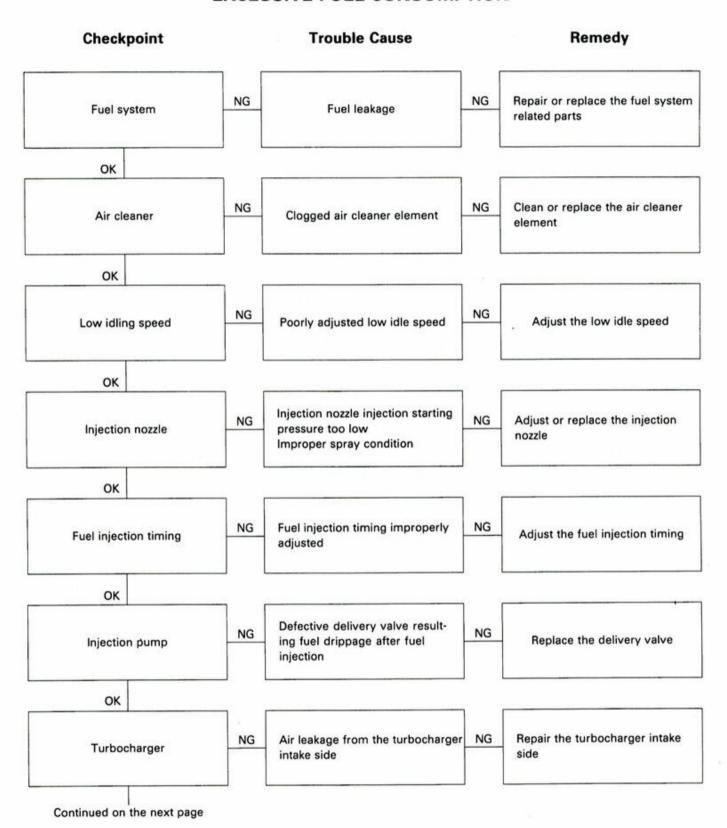
UNSTABLE LOW IDLING



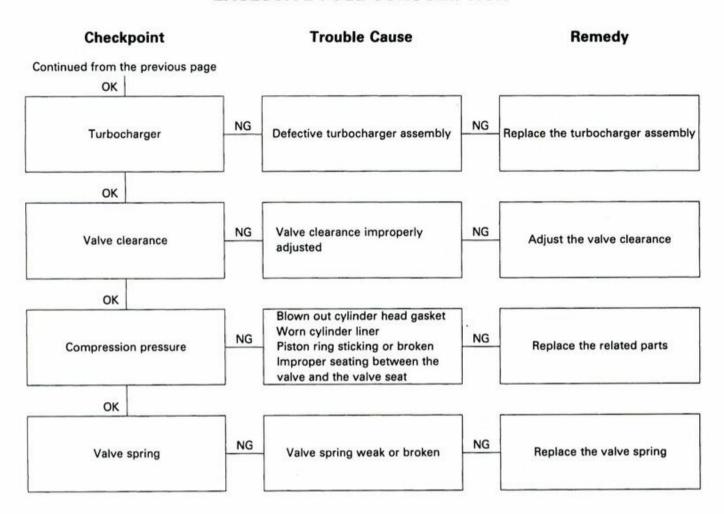
INSUFFICIENT POWER


INSUFFICIENT POWER

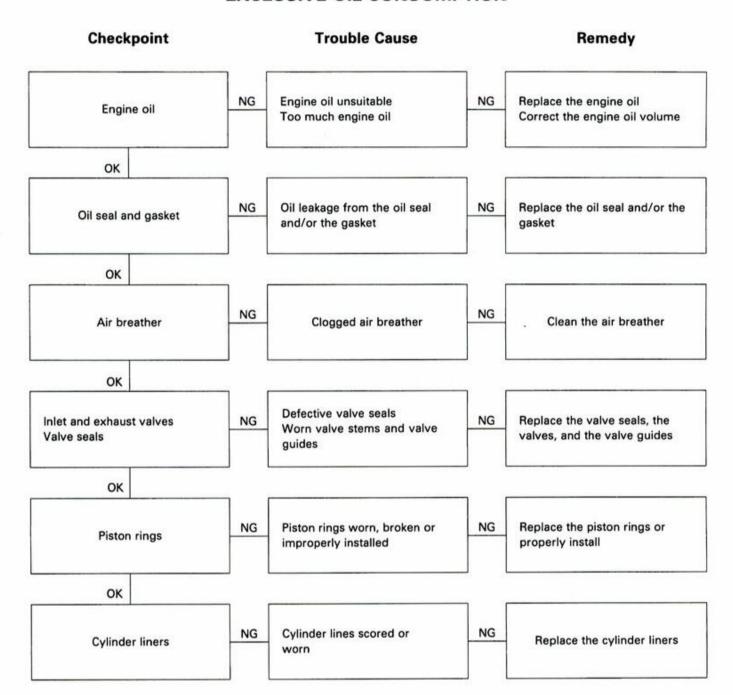
Continued on the next page



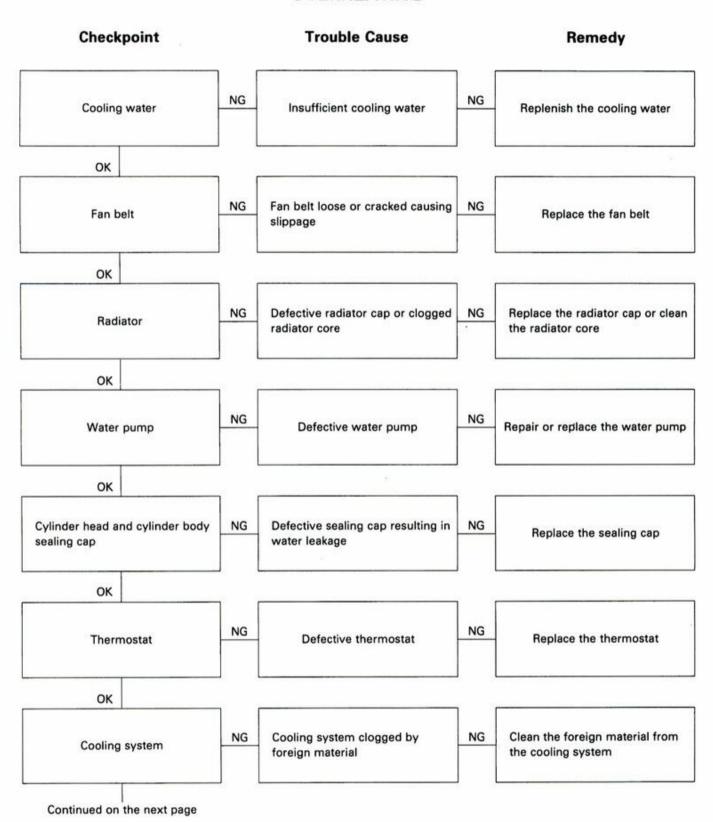
INSUFFICIENT POWER



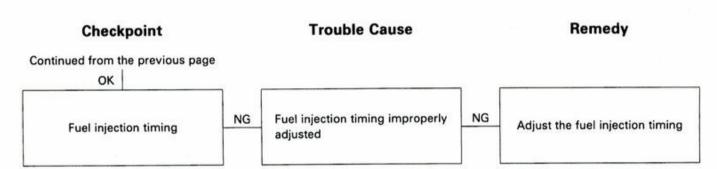
EXCESSIVE FUEL CONSUMPTION



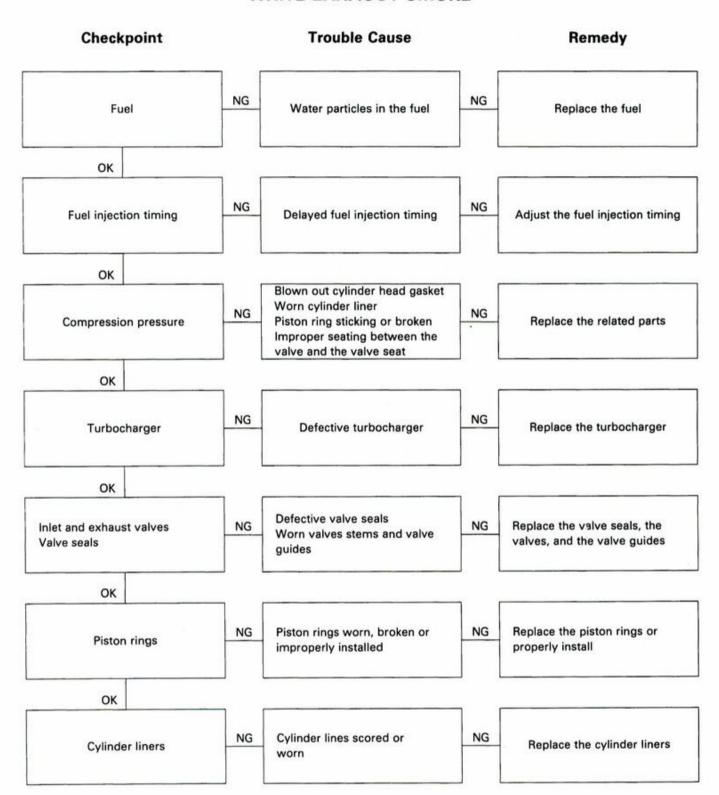
EXCESSIVE FUEL CONSUMPTION



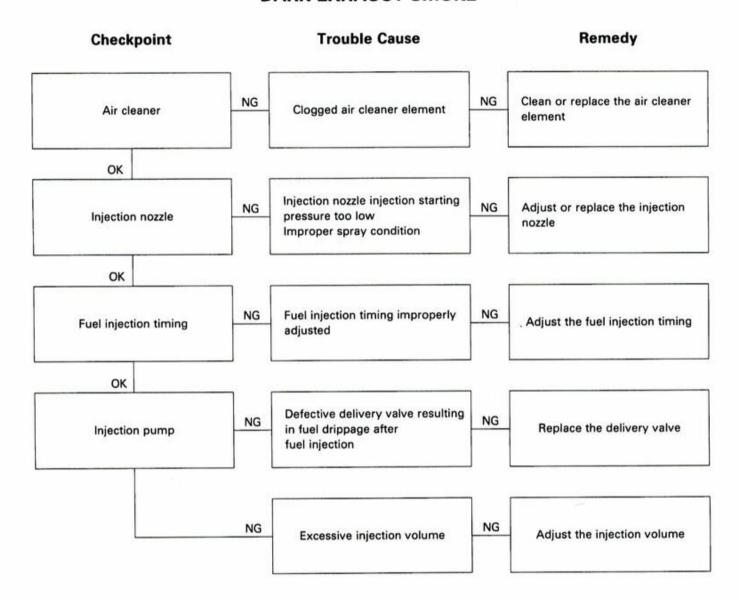
EXCESSIVE OIL CONSUMPTION

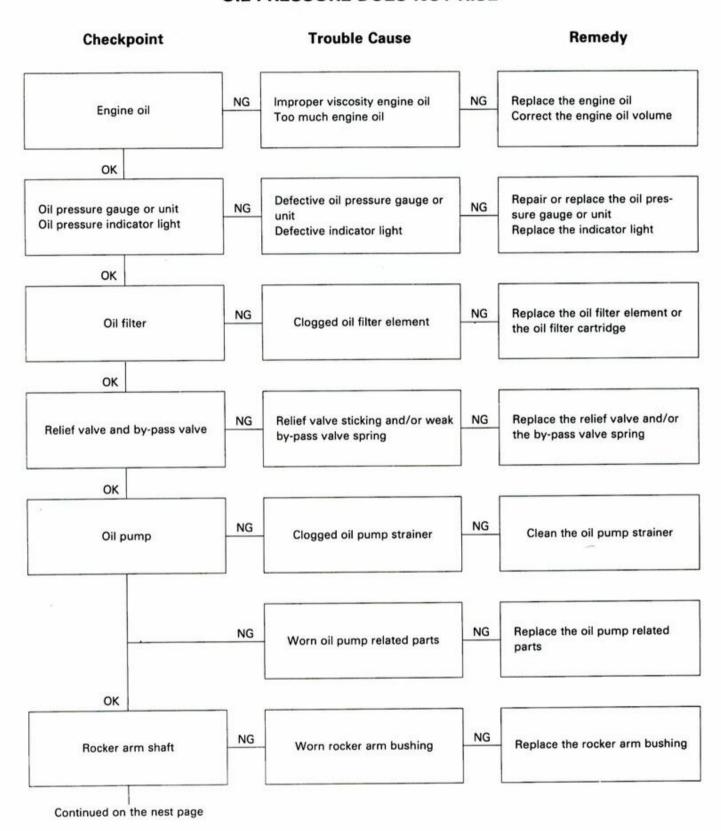


OVERHEATING

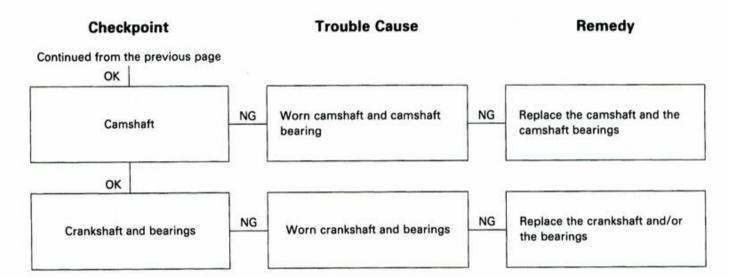


OVERHEATING


WHITE EXHAUST SMOKE


TROUBLESHOOTING

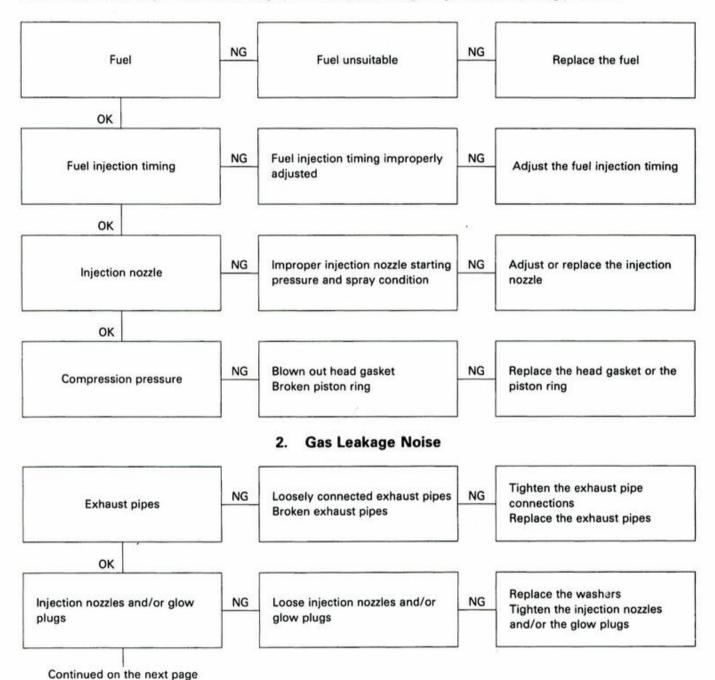
DARK EXHAUST SMOKE



OIL PRESSURE DOES NOT RISE

OIL PRESSURE DOES NOT RISE

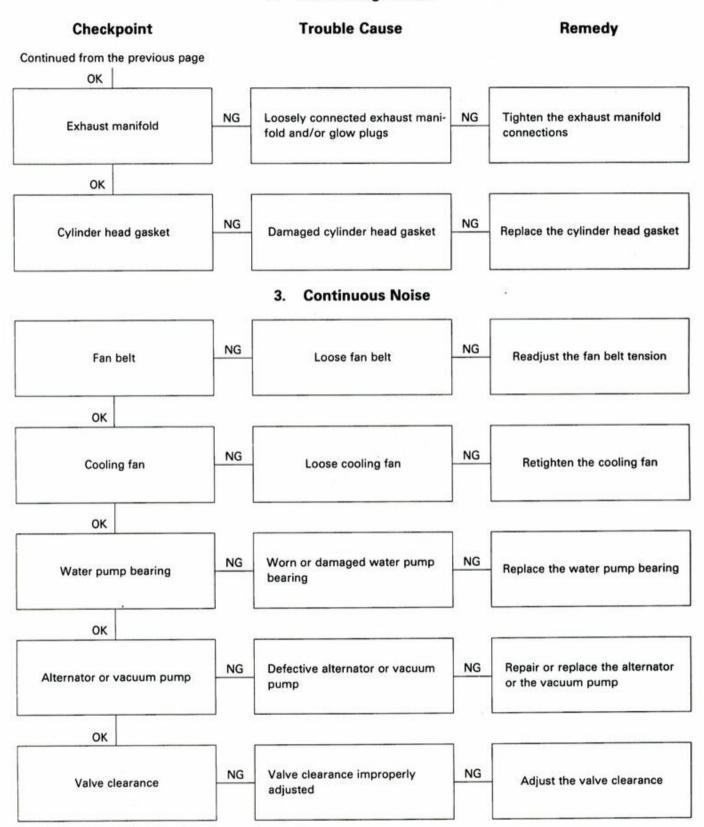
ABNORMAL ENGINE NOISE


Engine Knocking

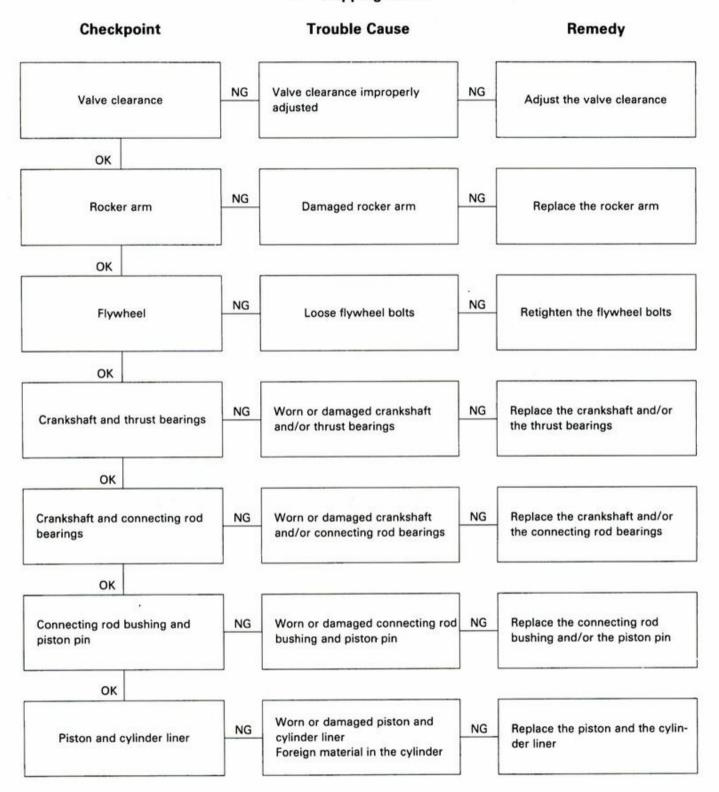
Checkpoint

Trouble Cause

Remedy


Check to see that the engine has been thoroughly warmed up before beginning the troubleshooting procedure.

ABNORMAL ENGINE NOISE


2. Gas Leakage Noise

ABNORMAL ENGINE NOISE

4. Slapping Noise

SECTION 11

SPECIAL TOOL LIST

TABLE OF CONTENTS

ITEM P	AGE
Special tool list	196

SPECIAL TOOL LIST

ITEM NO.	ILLUSTRATION	PART NO.	PARTS NAME	PAGE
1.		5-8840-0145-0	Static timing gauge	28
2.		5-8840-2008-0 (J-29762)	Compression gauge with adaptor	30
3.		5-8531-7002-0 (J-26999-20)	Compression gauge adaptor	30
4.	RES .	9-8523-1423-0 (J-29760)	Spring compressor	45 93
5.		5-8521-0002-0	Universal puller	49 77
6.	•	5-8523-0002-0	Valve guide replacer and installer	56
7.		9-8523-2552-0	Cylinder liner remover	65
8.	DI FEETON DE LA CONTRACTION DE	9-8522-1148-0	Cylinder liner remover grip	65
9.		9-8523-2551-0	Cylinder liner installer	67
10.		9-8521-0074-0 (JKM-2005)	Crankshaft gear remover	84

ITEM NO.	ILLUSTRATION	PART NO.	PARTS NAME	PAGE
11.		9-8522-0021-0	Crankshaft gear installer	84
12.		5-8522-0013-0	Front oil seal installer	87
13.		9-8522-1279-0	Rear oil seal installer	101
14.		9-8523-1360-0	Bearing installer	76
15.		5-8840-9018-0	Piston ring compressor	104

SECTION 12

CONVERSION TABLE

TABLE OF CONTENTS

ITEM P.	AGE
Length	199
Area	201
Volume	
Mass	203
Pressure	204
Torque	205
Temperature	206

LENGTH

MILLIMETERS TO INCHES

WILLINGTERS TO INCHES

INCHES TO MILLIMETERS

mm	in.	mm	in.	mm	in.	mm	in.
1	0.0394	26	1.0236	51	2.0079	76	2.9921
2	0.0787	27	1.0630	52	2.0472	77	3.0315
3	0.1181	28	1.1024	53	2.0866	78	3.0709
4	0.1575	29	1.1417	54	2.1260	79	3.1102
5	0.1969	30	1.1811	55	2.1654	80	3.1496
6	0.2362	31	1.2205	56	2.2047	81	3.1890
7	0.2756	32	1.2598	57	2.2441	82	3.2283
8	0.3150	33	1.2992	58	2.2835	83	3.2677
9	0.3543	34	1.3386	59	2.3228	84	3.3071
10	0.3937	35	1.3780	60	2.3622	85	3.3465
11	0.4331	36	1.4173	61	2.4016	86	3.3858
12	0.4724	37	1.4567	62	2.4409	87	3.4252
13	0.5118	38	1.4961	63	2.4803	88	3.4646
14	0.5512	39	1.5354	64	2.5197	89	3.5039
15	0.5906	40	1.5748	65	2.5591	90	3.5433
16	0.6299	41	1.6142	66	2.5984	91	3.5827
17	0.6693	42	1.6535	67	2.6378	92	3.6220
18	0.7087	43	1.6929	68	2.6772	93	3.6614
19	0.7480	44	1.7323	69	2.7165	94	3.7008
20	0.7874	45	1.7717	70	2.7559	95	3.7402
21	0.8268	46	1.8110	71	2.7953	96	3.7795
22	0.8661	47	1.8504	72	2.8346	97	3.8189
23	0.9055	48	1.8898	73	2.8740	98	3.8583
24	0.9449	49	1.9291	74	2.9134	99	3.8976
25	0.9843	50	1.9685	75	2.9528	100	3.9370
101	3.9764	111	4.3701	121	4.7638	131	5.1575
102	4.0157	112	4.4094	122	4.8031	132	5.1968
103	4.0551	113	4.4488	123	4.8425	133	5.2362
104	4.0945	114	4.4882	124	4.8819	134	5.2756
105	4.1339	115	4.5276	125	4.9213	135	5.3150
106	4.1732	116	4.5669	126	4.9606	136	5.3543
107	4.2126	117	4.6063	127	5.0000	137	5.3937
108	4.2520	118	4.6457	128	5.0394	138	5.4331
109	4.2913	119	4.6850	129	5.0787	139	5.4724

	in.		mm	in.		mm
		1/64	0.3969	3	3/64	13.0969
	1/32	0.000000	0.7938	17/32		13.4938
		3/64	1.1906	3	5/64	13.8906
1/16			1.5875	9/16		14.2875
		5/64	1.9844	3	7/64	14.6844
	3/32		2.3813	19/32		15.0813
		7/64	2.7781	3	9/64	15.4781
1/8		100000000	3.1750	5/8		15.8750
		9/64	3.5719	4	1/64	16.2719
3	5/32		3.9688	21/32		16.6688
		11/64	4.3656	4	3/64	17.0656
3/16			4.7625	11/16		17.4625
		13/64	5.1594	4	5/64	17.8594
	7/32		5.5563	23/32		18.2563
		15/64	5.9531	4	7/64	18.6531
1/4			6.3500	3/4		19.0500
		17/64	6.7469	4	9/64	19.4469
3	9/32		7.1438	25/32		19.8438
		19/64	7.5406	5	1/64	20.2406
5/16			7.9375	13/16		20.6375
		21/64	8.3344	5	3/64	21.0344
1	1/32		8.7313	27/32		21.4313
		23/64	9.1281	5	55/64	21.8281
3/8			9.5250	7/8		22.2250
		25/64	9.9219	5	7/64	22.6219
1	3/32		10.3188	29/32		23.0188
		27/64	10.7156		9/64	23.4156
7/16			11.1125	15/16		23.8125
		29/64	11.5094		31/64	24.2094
1	5/32		11.9063	31/32		24.6063
		31/64	12.3031	6	33/64	25.0031
1/2			12.7000	1		25.4000

LENGTH

FEET TO METERS

ft.	0	1	2	3	4	5	6	7	8	9	ft.
	m	m	m	m	m	m	m	m	m	m	
_		0.305	0.610	0.914	1.219	1.524	1.829	2.134	2.438	2.743	_
10	3.048	3.353	3.658	3.962	4.267	4.572	4.877	5.182	5.486	5.791	10
20	6.096	6.401	6.706	7.010	7.315	7.620	7.925	8.230	8.534	8.839	20
30	9.144	9.449	9.754	10.058	10.363	10.668	10.973	11.278	11.582	11.887	30
40	12.192	12.497	12.802	13.106	13.411	13.716	14.021	14.326	14.630	14.935	40
50	15.240	15.545	15.850	16.154	16.459	16.764	17.069	17.374	17.678	17.983	50
60	18.288	18.593	18.898	19.202	19.507	19.812	20.117	20.422	20.726	21.031	60
70	21.336	21.641	21.946	22.250	22.555	22.860	23.165	23.470	23.774	24.079	70
80	24.384	24.689	24.994	25.298	25.603	25.908	26.213	26.518	26.822	27.127	80
90	27.432	27.737	28.042	28.346	28.651	28.956	29.261	29.566	29.870	30.175	90
100	30.480	30.785	31.090	31.394	31.699	32.004	32.309	32.614	32.918	33.223	100

METERS TO FEET

m	0	1	2	3	4	5	6	7	8	9	m
	ft.										
	1	3.2808	6.5617	9.8425	13.1234	16.4042	19.6850	22.9659	26.2467	29.5276	_
10	32.8084	36.0892	39.3701	42.6509	45.9318	49.2126	52.4934	55.7743	59.0551	62.3360	10
20	65.6168	68.8976	72.1785	75.4593	78.7402	82.0210	85.3018	88.5827	91.8635	95.1444	20
30	98.4252	101.7060	104.9869	108.2677	111.5486	114.8294	118.1102	121.3911	124.6719	127.9528	30
40	131.2336	134.5144	137.7953	141.0761	144.3570	147.6378	150.9186	154.1995	175.4803	160.7612	40
50	164.0420	167.3228	170.6037	173.8845	177.1654	180.4462	183.7270	187.0079	190.2887	193.5696	50
60	196.8504	200.1312	203.4121	206.6929	209.9738	213.2546	216.5354	219.8163	223.0971	226.3780	60
70	229.6588	232.9396	236.2205	239.5013	242.7822	246.0630	249.3438	252.6247	255.9055	259.1864	70
80	262.4672	265.7480	269.0289	272.3097	275.5906	278.8714	282.1522	285.4331	288.7139	291.9948	80
90	295.2756	298.5564	301.8373	305.1181	308.3990	311.6798	314.9606	318.2415	321.5223	324.8032	90
100	328.0840	331.3648	334.6457	337.9265	341.2074	344.4882	347.7690	351.0499	354.3307	357.6116	100

MILES TO KILOMETERS

miles	0	1	2	3	4	5	6	7	8	9	miles
	km	1,0.00									
-		1.609	3.219	4.828	6.437	8.047	9.656	11.265	12.875	14.484	_
10	16.093	17.703	19.312	20.921	22.531	24.140	25.750	27.359	28.968	30.578	10
20	32.187	33.796	35.406	37.015	38.624	40.234	41.843	43.452	45.062	46.671	20
30	48.280	49.890	51.499	53.108	54.718	56.327	57.936	59.546	61.155	62.764	30
40	64.374	65.983	67.592	69.202	70.811	72.420	74.030	75.639	77.249	78.858	40
50	80.467	82.077	83.686	85.295	86.905	88.514	90.123	91.733	93.342	94.951	50
60	96.561	98.170	99.779	101.389	103.000	104.607	106.217	107.826	109.435	111.045	60
70	112.654	114.263	115.873	117.482	119.091	120.700	122.310	123.919	125.529	127.138	70
80	128.748	130.357	131.966	133.576	135.185	136.794	138.404	140.013	141.622	143.232	80
90	144.841	146.450	148.060	149.669	151.278	152.888	154.497	156.106	157.716	159.325	90
100	160.934	162.544	164.153	165.762	167.372	168.981	170.590	172.200	173.809	175.418	100

KILOMETERS TO MILES

km	0	1	2	3	4	5	6	7	8	9	km
	miles										
_		0.621	1.243	1.864	2.485	3.107	3.728	4.350	4.971	5.592	-
10	6.214	6.835	7.456	8.078	8.699	9.321	9.942	10.563	11.185	11.806	10
20	12.427	13.049	13.670	14.292	14.913	15.534	16.156	16.777	17.398	18.020	20
30	18.641	19.262	19.884	20.505	21.127	21.748	22.370	22.990	23.612	24.233	30
40	24.855	25.476	26.098	26.719	27.340	27.962	28.583	29.204	29.826	30.447	40
50	31.065	31.690	32.311	32.933	33.554	34.175	34.797	35.418	36.039	36.661	50
60	37.282	37.904	38.525	39.146	39.768	40.389	41.010	41.632	42.253	42.875	60
70	43.496	44.117	44.739	45.360	45.981	46.603	47.224	47.845	48.467	49.088	70
80	49.711	50.331	50.952	51.574	52.195	52.816	53.438	54.059	54.681	55.302	80
90	55.923	56.545	57.166	57.187	58.409	59.030	59.652	60.273	60.894	61.516	90
100	62.137	62.758	63.380	64.001	64.622	65.244	65.865	66.487	67:108	67.729	100

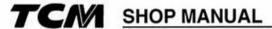
AREA

SQUARE INCHES TO SQUARE CENTIMETERS

in ²	0	1	2	3	4	5	6	7	8	9	in ²
	cm ²	cm ²	cm²	cm ²	cm ²	cm²	cm²	cm²	cm ²	cm ²	
_		6.452	12.903	19.355	25.806	32.258	38.710	45.161	51.613	58.064	-
10	64.516	70.968	77.419	83.871	90.322	96.774	103.226	109.677	116.129	122.580	10
20	129.032	135.484	141.935	148.387	154.838	161.290	167.742	174.193	180.645	187.096	20
30	193.548	200.000	206.451	212.903	219.354	225.806	232.258	238.709	245.161	251.612	30
40	258.064	264.516	270.967	277.419	283.870	290.322	296.774	303.225	309.677	316.128	40
50	322.580	329.032	335.483	341.935	348.386	354.838	361.290	367.741	374.193	380.644	50
60	387.096	393.548	399.999	406.451	412.902	419.354	425.806	432.257	438.709	445.160	60
70	451.612	458.064	464.515	470.967	477.418	483.870	490.322	496.773	503.225	509.676	70
80	516.128	522.580	529.031	535.483	541.934	548.386	554.838	561.289	567.741	574.192	80
90	580.644	587.096	593.547	599.999	606.450	612.902	619.354	625.805	632.257	638.708	90
100	645.160	651.612	658.063	664.515	670.966	677.418	683.870	690.312	696.773	703.224	100

SQUARE CENTIMETERS TO SQUARE INCHES

cm ²	0	1	2	3	4	5	6	7	8	9	cm ²
	in²	in²	in ²								
-		0.155	0.310	0.465	0.620	0.775	0.930	1.085	1.240	1.395	-
10	1.550	1.705	1.860	2.015	2.170	2.325	2.480	2.635	2.790	2.945	10
20	3.100	3.255	3.410	3.565	3.720	3.875	4.030	4.185	4.340	4.495	20
30	4.650	4.805	4.960	5.115	5.270	5.425	5.580	5.735	5.890	6.045	30
40	6.200	6.355	6.510	6.665	6.820	6.975	7.130	7.285	7.440	7.595	40
50	7.750	7.905	8.060	8.215	8.370	8.525	8.680	8.835	8.990	9.145	50
60	9.300	9.455	9.610	9.765	9.920	10.075	10.230	10.385	10.540	10.695	60
70	10.850	11.005	11.160	11.315	11.470	11.625	11.780	11.935	12.090	12.245	70
80	12.400	12.555	12.710	12.865	13.020	13.175	13.330	13.485	13.640	13.795	80
90	13.950	14.105	14.260	14.415	14.570	14.725	14.880	15.035	15.190	15.345	90
100	15.500	15.655	15.810	15.965	16.120	16.275	16.430	16.583	16.740	16.895	100


VOLUME

CUBIC INCHES TO CUBIC CENTIMETERS

in ³	0	1	2	3	4	5	6	7	8	9	in ³
	cm³(cc)										
		16.387	32.774	49.161	65.548	81.935	98.322	114.709	131.097	147.484	-
10	163.871	180.258	196.645	213.032	229.419	245.806	262.193	278.580	294.967	311.354	10
20	327.741	344.128	360.515	376.902	393.290	209.677	426.064	442.451	458.838	475.225	20
30	491.612	507.999	524.386	540.773	557.160	573.547	589.934	606.321	622.708	639.095	30
40	655.483	671.870	688.257	704.644	721.031	737.418	753.805	770.192	786.579	802.966	40
50	819.353	835.740	852.127	868.514	884.901	901.289	917.676	934.063	950.450	966.837	50
60	983.224	999.611	1015.998	1032.385	1048.772	1065.159	1081.546	1097.933	1114.320	1130.707	60
70	1147.094	1163.482	1179.869	1196.256	1212.643	1229.030	1245.417	1261.804	1278.191	1294.578	70
80	1310.965	1327.352	1343.739	1360.126	1376.513	1392.900	1409.288	1425.675	1442.062	1458.449	80
90	1474.836	1491.223	1507.610	1523.997	1540.384	1556.771	1573.158	1589.545	1605.932	1622.319	90
100	1638.706	1655.093	1671,481	1687.868	1704.255	1720.642	1737.029	1753.416	1769.803	1786.190	100

CUBIC CENTIMETERS TO CUBIC INCHES

cm³(cc)	0	1	2	3	4	5	6	7	8	9	cm³(cc
	in ³										
_	100-100-100	0.0610	0.1220	0.1831	0.2441	0.3051	0.3661	0.4272	0.4882	0.5492	_
10	0.6102	0.6713	0.7323	0.7933	0.8543	0.9153	0.9764	1.0374	1.0984	1.1594	10
20	1.2205	1.2815	1.3425	1.4035	1.4646	1.5256	1.5866	1.6476	1.7086	1.7697	20
30	1.8307	1.8917	1.9527	2.0138	2.0748	2.1358	2.1968	2.2579	2.1389	2.3799	30
40	2.4409	2.5020	2.5630	2.6240	2.6850	2.7460	2.8071	2.8681	2.9291	2.9901	40
50	3.0512	3.1122	3.1732	3.2342	3.2952	3.3563	3.4173	3.4783	3.5393	3.6004	50
60	3.6614	3.7224	3.7834	3.8444	3.9055	3.9665	4.0275	4.0885	4.1496	4.2106	60
70	4.2716	4.3326	4.3937	4.4547	4.5157	4.5767	4.6377	4.6988	4.7598	4.8208	70
80	4.8818	4.9429	5.0039	5.0649	5.1259	5.1870	5.2480	5.3090	5.3700	5.4310	80
90	5.4921	5.5531	5.6141	5.6751	5.7362	5.7972	5.8582	5.9192	5.9803	6.0413	. 90
100	6.1023	6.1633	6.2243	6.2854	6.3464	6.4074	6.4684	6.5295	6.5905	6.6515	100

VOLUME

GALLONS (U. S.) TO LITERS

U.S. gal.	0	1	2	3	4	5	6	7	8	9	U.S. gal
	liters										
-		3.7854	7.5709	11.3563	15.1417	18.9271	22.7126	26.4980	30.2834	34.0633	-
10	37.8543	41.6397	45.4251	49.2105	52.9960	56.7814	60.5668	64.3523	68.1377	71.9231	10
20	75.7085	79.4940	83.2794	87.0648	90.8502	94.6357	98.4211	102.2065	105.9920	109.7774	20
30	113.5629	117.3482	121.1337	124.9191	128.7045	132.4901	136.2754	140.0608	143.8462	147.6316	30
40	151.4171	155.2025	158.9879	162.7734	166.5588	170.3442	174.1296	177.9151	181.7005	185.4859	40
50	189.2713	193.0568	196.8422	200.6276	204.4131	208.1985	211.9839	215.7693	219.5548	223.3402	50
60	227.1256	230.9110	234.6965	238.4819	242.2673	246.0527	249.8382	253.6236	257.4090	261.1945	60
70	264.9799	268.7653	272.5507	276.3362	280.1216	283.9070	287.6924	291.4779	295.2633	299.0487	70
80	302.8342	306.6196	310.4050	314.1904	317.9759	321.7613	325.5467	329.3321	333.1176	336.9030	80
90	340.6884	344.4738	348.2593	352.0447	355.8301	359.6156	363.4010	367.1864	370.9718	374.7573	90
100	378.5427	382.3281	386.1135	389.8990	393.6844	397.4698	401.2553	405.0407	408.8261	412.6115	100

LITERS TO GALLONS (U.S.)

liters	0	1	2	3	4	5	6	7	8	9	liters
	gal.										
_		0.2642	0.5283	0.7925	1.0567	1.3209	1.5850	1.8492	2.1134	2.3775	
10	2.6417	2.9059	3.1701	3.4342	3.6984	3.9626	4.2268	4.4909	4.7551	5.0193	10
20	5.2834	5.5476	5.8118	6.0760	6.3401	6.6043	6.8685	7.1326	7.3968	7.6610	20
30	7.9252	8.1893	8.4535	8.7177	8.9818	9.2460	9.5102	9.7743	10.0385	10.3027	30
40	10.5669	10.8311	11.0952	11.3594	11.6236	11.8877	12.1519	12.4161	12.6803	12.9444	40
50	13.2086	13.4728	13.7369	14.0011	14.2653	14.5295	14.7936	15.0578	15.3220	15.5861	50
60	15.8503	16.1145	16.3787	16.6428	16.9070	17.1711	17.4354	17.6995	17.9637	18.2279	60
70	18.4920	18.7562	19.0204	19.2846	19.5487	19.8129	20.0771	20.3412	20.6054	20.8696	70
80	21.1338	21.3979	21.6621	21.9263	22.1904	22.4546	22.7188	22.9830	23.2471	23.5113	80
90	23.7755	24.0397	24.3038	24.5680	24.8322	25.0963	25.3605	25.6247	25.8889	26.1530	90
100	26.4172	26.6814	26.9455	27.2097	27.4739	27.7381	28.0022	28.2664	28.5306	28.7947	100

GALLONS (IMP.) TO LITERS

Imp gal.	0	1	2	3	4	5	6	7	8	9	Imp gal
	liters	liters	liters	liters	liters	liters	liters	liters	liters	liters	
_		4.5459	9.0918	13.6377	18.1836	22.7295	27.2754	31.8213	36.3672	40.9131	_
10	45.4590	50.0049	54.5508	59.0967	63.6426	68.1885	72.7344	77.2803	81.8262	86.3721	10
20	90.9180	95.4639	100.0098	104.5557	109.1016	113.6475	118.1934	122.7393	127.2852	131.8311	20
30	136.3770	140.9229	145.4688	150.0147	154.5606	159.1065	163.6524	168.1983	172.7442	177.2901	30
40	181.8360	186.3819	190.9278	195.4737	200.0196	204.5655	209.1114	213.6573	218.2032	222.7491	40
50	227.2950	231,8409	236.3868	240.9327	245.4786	250.0245	254.5704	259.1163	263.6622	268.2081	50
60	272.7540	277.2999	281.8458	286.3917	290.9376	295.4835	300.0294	304.5753	309.1212	313.6671	60
70	318.2130	322.7589	327.3048	331.8507	336.8966	340.9425	345.4884	350.0343	354.5802	359.1261	70
80	363.6720	368.2179	372.7638	377.3097	381.8556	386.4015	390.9474	395.4933	400.0392	404.5851	80
90	409.1310		BEAUTIFUL TO SERVICE	422.7687	427.3146	431.8605	436.4064	440.9523	445.4982	450.0441	90
100	454.5900	459.1359	463.6818	468.2277	472.7736	477.3195	481.8654	486.4113	490.9572	495.5031	100

LITERS TO GALLONS (IMP.)

liters	0	1	2	3	4	5	6	7	8	9	liter
	gal.										
_		0.2200	0.4400	0.6599	0.8799	1.0999	1.3199	1.5399	1.7598	1.9798	_
10	2.1998	2.4198	2.6398	2.8597	3.0797	3.2997	3.5197	3.7397	3.9596	4.1796	10
20	4.3996	4.6196	4.8396	5.0595	5.2795	5.4995	5.7195	5.9395	6.1594	6.3794	20
30	6.5994	6.8194	7.0394	7.2593	7.4793	7.6993	7.9193	8.1393	8.3592	8.5792	30
40	8.7992	9.0192	9.2392	9.4591	9.6791	9.8991	10.1191	10.3391	10.5590	10.7790	40
50	10.9990	11.2190	11.4390	11.6590	11.8789	12.0989	12.3189	12.5389	12.7588	12.9788	50
60	13.1988	13.4188	13.6388	13.8587	14.0787	14.2987	14.5187	14.7387	14.9586	15.1786	60
70	15.3986	15.6186	15.8386	16.0585	16.2785	16.4985	16.7185	16.9385	17.1584	17.3784	70
80	17.5984	17.8184	18.0384	18.2583	18.4783	18.6983	18.9183	19.1383	19.3582	19.5782	80
90	19.7982	20.0182	20.2382	20.4581	20.6781	20.8981	21.1181	21.3381	21.5580	21.7780	90
100	21.9980	22.2180	22.4380	22.6579	22.8779	23.0979	23.3179	23.5379	23.7578	23.9778	100

MASS

POUNDS TO KILOGRAMS

lbs.	0	1	2	3	4	5	6	7	8	9	lbs.
	kg										
_		0.454	0.907	1.361	1.814	2.268	2.722	3.175	3.629	4.082	_
10	4.536	4.990	5.443	5.897	6.350	6.804	7.257	7.711	8.165	8.618	10
20	9.072	9.525	9.979	10.433	10.886	11.340	11.793	12.247	12.701	13.154	20
30	13.608	14.061	14.515	14.969	15.422	15.876	16.329	16.783	17.237	17.690	30
40	18.144	18.597	19.051	19.504	19.958	20.412	20.865	21.319	21.772	22.226	40
50	22.680	23.133	23.587	24.040	24.494	24.948	25.401	25.855	26.308	26.762	50
60	27.216	27.669	28.123	28.576	29.030	29.484	29.937	30.391	30.844	31.298	60
70	31.751	32.205	32.659	33.112	33.566	34.019	34.473	34.927	35.380	35.834	70
80	36.287	36.741	37.195	37.648	38.102	38.555	39.009	39.463	39.916	40.370	80
90	40.823	41.277	41.731	42.184	42.638	43.091	43.545	43.998	44.452	44.906	90
100	45.359	45.813	46.266	46.720	47.174	47.627	47.081	48.534	48.988	49.442	100

KILOGRAMS TO POUNDS

kg	0	1	2	3	4	5	6	7	8	9	kg
	lbs.	lbs.	lbs.								
_		2.205	4.409	6.614	8.818	11.023	13.228	15.432	17.637	19.842	-
10	22.046	24.251	26.455	28.660	30.865	33.069	35.274	. 37.479	39.683	41.888	10
20	44.092	46.297	48.502	50.706	52.911	55.116	57.320	59.525	61.729	63.934	20
30	66.139	68.343	70.548	72.753	74.957	77.162	79.366	81.571	83.776	85.980	30
40	88.185	90.390	92.594	94.799	97.003	99.208	101.413	103.617	105.822	108.026	40
50	110.231	112.436	114.640	116.845	119.050	121.254	123.459	125.633	127.868	130.073	50
60	132.277	134.482	136.687	138.891	141.096	143.300	145.505	147.710	149.914	152.119	60
70	154.324	156.528	158.732	160.937	163.142	165.347	167.551	169.756	171.961	174.165	70
80	176.370	178.574	180.780	182.984	185.188	187.393	189.597	191.802	194.007	196.211	80
90	198.416	200.621	202.825	205.030	207.234	209.439	211.644	213.848	216.053	218.258	90
100	220.462	222.667	224.871	227.076	229.281	231.485	233.690	235.895	238.099	240.304	100

KILOGRAMS TO NEWTON

kg	0	1	2	3	4	5	6	7	8	9	kg
	N	N	N	N	N	N	N	N	N	N	
_	-	9.81	19.61	29.42	39.23	49.03	58.84	68.65	78.45	88.26	_
10	98.07	107.87	117.68	127.49	137.29	147.10	156.91	166.71	176.52	186.33	10
20	196.13	205.94	215.75	225.55	235.36	245.17	254.97	264.78	274.59	284.39	20
30	294.20	304.01	313.81	323.62	333.43	343.23	353.04	362.85	372.65	382.46	30
40	392.27	402.07	411.88	421.69	431.49	441.30	451.11	460.91	470.72	480.53	40
50	490.33	500.14	509.95	519.75	529.56	539.37	549.17	558.98	568.79	578.59	50
60	558.40	598.21	608.01	617.82	627.63	637.43	647.24	657.05	666.85	676.66	60
70	686.47	696.27	706.08	715.89	725.69	735.50	745.31	755.11	764.92	774.73	70
80	784.53	794.34	804.15	813.95	823.76	833.57	843.37	853.18	862.99	872.79	80
90	882.60	892.41	902.21	912.02	921.83	931.63	941.44	951.25	961.05	970.86	90
100	980.67	990.47	1000.28	1010.08	1019.89	1029.70	1039.50	1049.31	1059.12	1068.92	100

NEWTON TO KILOGRAMS

N	0	10	20	30	40	50	60	70	80	90	N
	kg										
_	-	1.020	2.039	3.059	4.079	5.099	6.118	7.138	8.158	9.177	-
100	10.197	11.217	12.237	13.256	14.276	15.296	16.316	17.335	18.355	19.375	100
200	20.394	21.414	22.434	23.453	24.473	25.493	26.513	27.532	28.552	29.572	200
300	30.592	31.611	32.631	33.651	34.670	35.690	36.710	37.730	38.749	39.769	300
400	40.789	41.809	42.828	43.848	44.868	45.887	46.907	47.927	48.947	49.966	400
500	50.986	52.006	53.025	54.045	55.065	56.085	57.104	58.124	59.144	60.163	500
600	61.183	62.203	63.223	64.242	65.262	66.282	67.302	68.321	69.341	70.361	600
700	71.380	72.400	73.420	74.440	75.459	76.479	77.499	78.518	79.538	80.558	700
800	81.578	82.597	83.617	84.637	85.656	86.676	87.696	88.716	89.735	90.755	800
900	91.775	92.795	93.814	94.834	95.854	96.873	97.893	98.913	99.933	100.952	900
1000	101.972	102.992	104.011	105.031	106.051	107.071	108.090	109.110	110.130	111.149	1000

POUNDS PER SQUARE INCHES TO KILOGRAMS PER SQUARE CENTIMETERS

lb/in ²	0	1	2	3	4	5	6	7	8	9	lb/in ²
(psi)	kg/cm²	kg/cm²	kg/cm²	kg/cm ²	kg/cm ²	kg/cm²	kg/cm ²	kg/cm ²	kg/cm²	kg/cm ²	(psi)
_		0.0703	0.1406	0.2109	0.2812	0.3515	0.4218	0.4921	0.5625	0.6328	-
10	0.7031	0.7734	0.8437	0.9140	0.9843	1.0546	1.1249	1.1952	1.2655	1.3358	10
20	1.4061	1.4764	1.5468	1.6171	1.6874	1.7577	1.8280	1.8983	1.9686	2.0389	20
30	2.1092	2.1795	2.2498	2.3201	2.3904	2.4607	2.5311	2.6014	2.6717	2.7420	30
40	2.8123	2.8826	2.9529	3.0232	3.0935	3.1638	3.2341	3.3044	3.3747	3.4450	40
50	3.5154	3.5857	3.6560	3.7263	3.7966	3.8669	3.9372	4.0075	4.0778	4.1481	50
60	4.2184	4.2887	4.3590	4.4293	4.4996	4.5700	4.6403	4.7106	4.7809	4.8512	60
70	4.9215	4.9918	5.0621	5.1324	5.2027	5.2730	5.3433	5.4136	5.4839	5.5543	70
80	5.6246	5.6947	5.7652	5.8355	5.9058	5.9761	6.0464	6.1167	6.1870	6.2573	80
90	6.3276	6.3979	6.4682	6.5386	6.6089	6.6792	6.7495	6.8198	6.8901	6.9604	90
100	7.0307	7.1010	7.1713	7.2416	7.3119	7.3822	7.4525	7.5228	7.5932	7.6635	100

KILOGRAMS PER SQUARE CENTIMETERS TO POUNDS PER SQUARE INCHES

kg/cm ²	0	1	2	3	4	5	6	7	8	9	kg/cm
	lb/in²(psi)										
_		14.22	28.45	42.67	56.89	71.12	85.34	99.56	113.78	128.01	-
10	142.23	156.45	170.68	184.90	199.12	213.35	227.57	241.79	256.01	270.24	10
20	284.46	298.68	312.91	327.13	341.35	355.58	369.80	384.02	398.24	412.47	20
30	426.69	440.91	455.14	469.36	483.58	497.81	512.03	526.25	540.47	554.70	30
40	568.92	583.14	597.37	611.59	625.81	640.04	654.26	668.48	682.70	696.93	40
50	711.16	725.37	739.60	753.82	768.04	782.27	795.49	810.71	824.93	839.16	50
60	853.38	867.60	881.83	896.05	910.27	924.50	938.72	952.94	967.16	981.39	60
70	995.61	1009.83	1024.06	1038.28	1052.50	1066.73	1080.95	1095.17	1109.39	1123.62	70
80	1137.84	1152.06	1166.27	1180.51	1194.73	1208.96	1223.18	1237.40	1251.62	1265.85	80
90	1280.07	1294.20	1308.52	1322.74	1336.96	1351.19	1365.41	1379.63	1393.85	1408.08	90
100	1422.30	1436.52	1450.75	1464.97	1479.19	1493.42	1507.64	1521.86	1536.08	1550.31	100

KILOGRAMS PER SQUARE CENTIMETERS TO KILO PASCAL

kg/cm ²	0	1	2	3	4	5	6	7	8	9	kg/cm ²
	KPa	KPa	KPa	KPa	KPa	KPa	KPa	KPa	KPa	KPa	
_	_	98.1	196.1	294.2	392.3	490.3	588.4	686.5	784.5	882.6	_
10	980.7	1078.7	1176.8	1274.9	1372.9	1471.0	1569.1	1667.1	1765.2	1863.3	10
20	1961.3	2059.4	2157.5	2255.5	2353.6	2451.7	2549.7	2647.8	2745.9	2843.9	20
30	2942.0	3040.1	3138.1	3236.2	3334.3	3432.3	3530.4	3628.5	3726.5	3824.6	30
40	3922.7	4020.7	4118.8	4216.9	4314.9	4413.0	4511.1	4609.1	4707.2	4805.3	40
50	4903.3	5001.4	5099.5	5197.5	5295.6	5393.7	5491.7	5589.8	5687.9	5785.9	50
60	5584.0	5982.1	6080.1	6178.2	6276.3	6374.3	6472.4	6570.5	6668.5	6766.6	60
70	6864.7	6962.7	7060.8	7158.9	7256.9	7355.0	7453.1	7551.1	7649.2	7747.3	70
80	7845.3	7943.4	8041.5	8139.5	8237.6	8335.7	8433.7	8531.8	8629.9	8727.9	80
90	8826.0	8924.1	9022.1	9120.2	9218.3	9316.3	9414.4	9512.5	9610.5	9708.6	90
100	9806.7	9904.7	10002.8	10100.8	10198.9	10297.0	10395.0	10493.1	10591.2	10689.2	100

KILO PASCAL TO KILOGRAMS PER SQUARE CENTIMETERS

KPa	0	100	200	300	400	500	600	700	800	900	KPa
	kg/cm²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm²	
-	-	1.020	2.039	3.059	4.079	5.099	6.118	7.138	8.158	9.177	-
1000	10.197	11.217	12.237	13.256	14.276	15.296	16.316	17.335	18.355	19.375	1000
2000	20.394	21.414	22.434	23.453	24.473	25.493	26.513	27.532	28.552	29.572	2000
3000	30.592	31.611	32.631	33.651	34.670	35.690	36.710	37.730	38.749	39.769	3000
4000	40.789	41,809	42.828	43.848	44.868	45.887	46.907	47.927	48.947	49.966	4000
5000	50.986	52.006	53.025	54.045	55.065	56.085	57.104	58.124	59.144	60.163	5000
6000	61.183	62.203	63.223	64.242	65.262	66.282	67.302	68.321	69.341	70.361	6000
7000	71,380	72.400	73.420	74.440	75.459	76.479	77.499	78.518	79.538	80.558	7000
8000	81,578	82.597	83.617	84.637	85.656	86.676	87.696	88.716	89.735	90.755	8000
9000	91,775	92.794	93.814	94.834	95.854	96.873	97.893	98.913	99.933	100.952	9000
10000	101.972	102.992	104.011	105.031	106.051	107.071	108.090	109.110	110.130	111.149	10000

TORQUE

FOOT POUNDS TO KILOGRAMMETERS

ft. lbs.	0	1	2	3	4	5	6	7	8	9	ft. lbs
	kg-m										
-		0.138	0.277	0.415	0.553	0.691	0.830	0.968	1.106	1.244	-
10	1.383	1.521	1.659	1.797	1.936	2.074	2.212	2.350	2.489	2.627	10
20	2.765	2.903	3.042	3.180	3.318	3.456	3.595	3.733	3.871	4.009	20
30	4.148	4.286	4.424	4.562	4.700	4.839	4.977	5.115	5.253	5.392	30
40	5.530	5.668	5.807	5.945	6.083	6.221	6.360	6.498	6.636	6.774	40
50	6.913	7.051	7.189	7.328	7.466	7.604	7.742	7.881	8.019	8.157	50
60	8.295	8.434	8.572	8.710	8.848	8.987	9.125	9.263	9.401	9.540	60
70	9.678	9.816	9.954	10.093	10.231	10.369	10.507	10.646	10.784	10.922	70
80	11.060	11.199	11.337	11.475	11.613	11.752	11.890	12.028	12.166	12.305	80
90	12.442	12.581	12.719	12.858	12.996	13.134	13.272	13.410	13.549	13.687	90
100	13.826	13.964	14.102	14.240	14.379	14.517	14.655	14.793	14.932	15.070	100

KILOGRAMMETERS TO FOOT POUNDS

kg-m	0	1	2	3	4	5	6	7	8	9	kg-m
	ft. lbs.										
-		7.23	14.47	21.70	28.93	36.17	43.40	50.63	57.86	65.10	-
10	72.33	79.56	86.80	94.03	101.26	108.50	115.73	122.96	130.19	137.43	10
20	144.66	151.89	159.13	166.36	173.59	180.83	188.06	195.29	202.52	209.76	20
30	217.00	224.22	231.46	238.69	245.92	253.16	260.39	267.62	274.85	282.09	30
40	289.32	296.55	303.79	311.02	318.25	325.49	332.72	339.95	347.18	354.42	40
50	361.65	368.88	376.12	383.35	390.58	397.82	405.05	412.28	419.51	426.75	50
60	433.98	441.21	448.45	455.68	462.91	470.15	477.38	484.61	491.84	499.08	60
70	506.31	513.54	520.78	528.01	535.24	542.48	549.71	556.94	564.17	571.41	70
80	578.64	585.87	593.11	600.34	607.57	614.81	622.04	629.27	636.50	643.74	80
90	650.97	658.20	665.44	672.67	679.90	687.14	694.37	701.60	708.83	716.07	90
100	723.30	730.53	737.77	745.00	752.23	759.47	766.70	773.93	781.16	788.40	100

KILOGRAMMETERS TO NEWTONMETERS

kg-m	0	1	2	3	4	5	6	7	8	9	kg-m
	N-m	N-m	N-m	N-m	N-m	N-m	N-m	N-m	N-m	N-m	
_	_	9.81	19.61	29.42	39.23	49.03	58.84	68.65	78.45	88.26	-
10	98.07	107.87	117.68	127.49	137.29	147.10	156.91	166.71	176.52	186.33	10
20	196.13	205.94	215.75	225.55	235.36	245.17	254.97	264.78	274.59	284.39	20
30	294.20	304.01	313.81	323.62	333.43	343.23	353.04	362.85	372.65	382.46	30
40	392.27	402.07	411.88	421.69	431.49	441.30	451.11	460.91	470.72	480.53	40
50	490.33	500.14	509.95	519.75	529.56	539.37	549.17	558.98	568.79	578.59	50
60	588.40	598.21	608.01	617.82	627.63	637.43	647.24	657.05	666.85	676.66	60
70	686.47	696.27	706.08	715.89	725.69	735.50	745.31	755.11	764.92	774.73	70
80	784.53	794.34	804.15	813.95	823.76	833.57	843.37	853.18	862.99	872.79	80
90	882.60	892.41	902.21	912.02	921.83	931.63	941.44	951.25	961.05	970.86	90
100	980.67	990.47	1000.28	1010.08	1019.89	1029.70	1039.50	1049.31	1059.12	1068.92	100

NEWTONMETERS TO KILOGRAMMETERS

N-m	0	10	20	30	40	50	60	70	80	90	N-m
	kg-m										
_		1.020	2.039	3.059	4.079	5.099	6.118	7.138	8.158	9.177	-
100	10.197	11.217	12.236	13.256	14.276	15.296	16.315	17.335	18.355	19.374	100
200	20.394	21.414	22.433	23.453	24.473	25.493	26.512	27.532	28.552	29.571	200
300	30.591	31.611	32.630	33.650	34.670	35.690	36.710	37.729	38.749	39.768	300
400	40.789	41.808	42.827	43.847	44.867	45.887	46.906	47.926	48.946	49.965	400
500	50.986	52.005	53.024	54.044	55.064	56.084	57.103	58.123	59.143	60.162	500
600	61.183	62.202	63.221	64.241	65.261	66.281	67.300	68.320	69.340	70.359	600
700	71.380	72.399	73.418	74.438	75.458	76.478	77.497	78.517	79.537	80.556	700
800	81.577	82.596	83.615	84.635	85.655	86.675	87.694	88.714	89.734	90.753	800
900	91.774	92.793	93.812	94.832	95.852	96.872	97.891	98.911	99.931	100.950	900
1000	101.972	102.990	104.009	105.029	106.049	107.069	108.088	109.108	110.128	111.147	, 1000

TEMPERATURE

FAHRENHEIT TO CENTIGRADE

°F	°C	°F	°C	°F	°C	°F	°C	°F	°C	°F	°C	°F	°C	°F	°C
-60	-51.1	-2	-18.9	56	13.3	114	45.6	172	77.8	230	110.0	288	142.2	346	174.4
-58	-50	0	-17.8	58	14.4	116	46.7	174	78.9	232	111.1	290	143.3	348	175.6
-56	-48.9	2	-16.7	60	15.6	118	47.8	176	80.0	234	112.2	292	144.4	350	176.7
-54	-47.8	4	-15.6	62	16.7	120	48.9	178	81.1	236	113.3	294	145.6	352	177.8
-52	-46.7	6	-14.4	64	17.8	122	50.0	180	82.2	238	114.4	296	146.7	354	178.9
-50	-45.6	8	-13.3	66	18.9	124	51.1	182	83.3	240	115.6	298	147.8	356	180.0
-48	-44.4	10	-12.2	68	20.0	126	52.2	184	84.4	242	116.7	300	148.9	358	181.1
-46	-43.3	12	-11.1	70	21.1	128	53.3	186	85.6	244	117.8	302	150.0	360	182.2
-44	-42.2	14	-10.0	72	22.2	130	54.4	188	86.7	246	118.9	304	151.1	362	183.3
-42	-41.1	16	-8.9	74	23.3	132	55.6	190	87.8	248	120.0	306	152.2	364	184.4
-40	-40.0	18	-7.8	76	24.9	134	56.7	192	88.9	250	121.1	308	153.3	366	185.6
-38	-38.9	20	-6.7	78	25.6	136	57.8	194	90.0	252	122.2	310	154.4	368	186.7
-36	-37.8	22	-5.6	80	26.7	138	58.9	196	91.1	254	123.3	312	155.6	370	187.8
-34	-36.7	24	-4.4	82	27.8	140	60.0	198	92.2	256	124.4	314	156.7	372	188.9
-32	-35.6	26	-3.3	84	28.9	142	61.1	200	93.3	258	125.6	316	157.8	374	190.0
-30	-34.4	28	-2.2	86	30.0	144	62.2	202	94.4	260	126.7	318	158.9	376	191.1
-28	-33.3	30	-1.1	88	31.1	146	63.3	204	95.6	262	127.8	320	160.0	378	192.2
-26	-32.2	32	-0	90	32.2	148	64.4	206	96.7	264	128.9	322	161.1	380	193.3
-24	-31.1	34	1.1	92	33.3	150	65.6	208	97.8	266	130.0	324	162.2	382	194.4
-22	-30.0	36	2.2	94	34.4	152	66.7	210	98.9	268	131.1	326	163.3	384	195.6
-20	-28.9	38	3.3	96	35.6	154	67.8	212	100.0	270	132.2	328	164.4	386	196.7
-18	-27.8	40	4.4	98	36.7	156	68.9	214	101.1	272	133.3	330	165.6	388	197.8
-16	-26.7	42	5.6	100	37.8	158	70.0	216	102.2	274	134.4	332	166.7	390	198.9
-14	-25.6	44	6.7	102	38.9	160	71.1	218	103.3	276	135.6	334	167.8	392	200.0
-12	-24.4	46	7.8	104	40.0	162	72.2	220	104.4	278	136.7	336	168.9	400	204.4
-10	-23.3	48	8.9	106	41.1	164	73.3	222	105.6	280	137.8	338	170.0	410	210.0
-8	-22.2	50	10.0	108	42.2	166	74.4	224	106.7	282	138.9	340	171.1	420	215.6
-6	-21.1	52	11.1	110	43.3	168	75.6	226	107.8	284	140.0	342	172.2	430	221.
-4	-20.0	54	12.2	112	44.4	170	76.7	228	108.9	286	141.1	344	173.3	440	226.

CENTIGRADE TO FAHRENHEIT

°C	°F	°C	°F	°C	°F	°C	°F	°C	°F	°C	°F	°C	°F	°C	°F
-50	-58.0	-18	- 0.4	14	57.2	46	114.8	78	172.4	110	230.0	142	287.6	174	345.2
-49	-56.2	-17	1.4	15	59.0	47	116.6	79	174.2	111	231.8	143	289.4	175	347.0
-48	-54.4	-16	3.2	16	60.8	48	118.4	80	176.0	112	233.6	144	291.2	176	348.
-47	-52.6	-15	5.0	17	62.6	49	120.2	81	177.8	113	235.4	145	293.0	177	350.
-46	-50.8	-14	6.8	18	64.4	50	122.0	82	179.6	114	237.2	146	294.8	178	352.
-45	-49.0	-13	8.6	19	66.2	51	123.8	83	181.4	115	239.0	147	296.6	179	354.
-44	-47.2	-12	10.4	20	68.0	52	125.6	84	183.2	116	240.8	148	298.4	180	356.
-43	-45.4	-11	12.2	21	69.8	53	127.4	85	185.0	117	242.6	149	300.2	181	357
-42	-43.6	-10	14.0	22	71.6	54	129.2	86	186.8	118	244.4	150	302.0	182	359.
-41	-41.8	-9	15.8	23	73.4	55	131.0	87	188.6	119	246.2	151	303.8	183	361
-40	-40.0	-8	17.6	24	75.2	56	132.8	88	190.4	120	248.0	152	305.6	184	363
-39	-38.2	-7	19.4	25	77.0	57	134.6	89	192.2	121	249.8	153	307.4	185	365
-38	-36.4	-6	21.2	26	78.8	58	136.4	90	194.0	122	251.6	154	309.2	186	366
-37	-34.6	-5	23.0	27	80.6	59	138.2	91	195.8	123	253.4	155	311.0	187	368
-36	-32.8	-4	24.8	28	82.4	60	140.0	92	197.6	124	255.2	156	312.8	188	370
-35	-31.0	-3	26.6	29	84.2	61	141.8	93	199.4	125	257.0	157	314.6	189	372
-34	-29.2	-2	28.4	30	86.0	62	143.6	94	201.2	126	258.8	158	316.4	190	374
-33	-27.4	-1	30.2	31	87.8	63	145.4	95	203.0	127	260.6	159	318.2	191	375
-32	-25.6	0	32.0	32	89.6	64	147.2	96	204.8	128	262.4	160	320.0	192	377
-31	-23.8	1	33.8	33	91.4	65	149.0	97	206.6	129	264.2	161	321.8	193	379
-30	-22.0	2	35.6	34	93.2	66	150.8	98	208.4	130	266.0	162	323.6	194	381
-29	-20.2	3	37.4	35	95.0	67	152.6	99	210.2	131	267.8	163	325.4	195	383
-28	-18.4	4	39.2	36	96.8	68	154.4	100	212.0	132	269.6	164	327.2	196	384
-27	-16.6	5	41.0	37	98.6	69	156.2	101	213.8	133	271.4	165	329.0	197	386
-26	-14.8	6	42.8	38	100.4	70	158.0	102	215.6	134	273.2	166	330.8	198	388
-25	-13.0	7	44.6	39	102.2	71	159.8	103	217.4	135	275.0	167	332.6	199	390
-24	-11.2	8	46.4	40	104.0	72	161.6	104	219.2	136	276.8	168	334.4	200	392
-23	-9.4	9	48.2	41	105.8	73	163.4	105	221.0	137	278.6	169	336.4	210	410
-22	-7.6	10	50.0	42	107.6	74	165.2	106	222.8	138	280.4	170	338.0	220	428
-21	-5.8	11	51.8	43	109.4	75	167.0	107	224.6	139	282.2	171	339.8	230	446
-20	-4.4	12	53.6	44	111.2	76	168.8	108	226.4	140	284.0	172	341.6	240	464
-19	-2.2	13	55.4	45	113.0	77	170.6	109	228.2	141	285.8	173	343.4	250	482

No. ME-C240PKJBE

Issued:

Dec., 1987

Revised:

June, 2002

vioca. ourio, 2001

INTERNATIONAL MARKETING DIVISION:

1-15-5, Nishi-shimbashi, Minato-ku, Tokyo

105-0003, Japan

FAX: JAPAN +81-3-35918152, 3-35918153

All rights reserved

OT-1406030(HO) Printed in Japan

